Suppr超能文献

视觉皮层和内嗅皮层中的自我运动处理:输入、整合及其对位置编码的影响

Self-motion processing in visual and entorhinal cortices: inputs, integration, and implications for position coding.

作者信息

Campbell Malcolm G, Giocomo Lisa M

机构信息

Department of Neurobiology, Stanford University , Stanford, California.

出版信息

J Neurophysiol. 2018 Oct 1;120(4):2091-2106. doi: 10.1152/jn.00686.2017. Epub 2018 Aug 8.

Abstract

The sensory signals generated by self-motion are complex and multimodal, but the ability to integrate these signals into a unified self-motion percept to guide navigation is essential for animal survival. Here, we summarize classic and recent work on self-motion coding in the visual and entorhinal cortices of the rodent brain. We compare motion processing in rodent and primate visual cortices, highlighting the strengths of classic primate work in establishing causal links between neural activity and perception, and discuss the integration of motor and visual signals in rodent visual cortex. We then turn to the medial entorhinal cortex (MEC), where calculations using self-motion to update position estimates are thought to occur. We focus on several key sources of self-motion information to MEC: the medial septum, which provides locomotor speed information; visual cortex, whose input has been increasingly recognized as essential to both position and speed-tuned MEC cells; and the head direction system, which is a major source of directional information for self-motion estimates. These inputs create a large and diverse group of self-motion codes in MEC, and great interest remains in how these self-motion codes might be integrated by MEC grid cells to estimate position. However, which signals are used in these calculations and the mechanisms by which they are integrated remain controversial. We end by proposing future experiments that could further our understanding of the interactions between MEC cells that code for self-motion and position and clarify the relationship between the activity of these cells and spatial perception.

摘要

自我运动产生的感觉信号复杂且多模态,但将这些信号整合为统一的自我运动感知以指导导航的能力对动物生存至关重要。在这里,我们总结了关于啮齿动物大脑视觉和内嗅皮质中自我运动编码的经典和近期研究。我们比较了啮齿动物和灵长类动物视觉皮质中的运动处理,强调了经典灵长类研究在建立神经活动与感知之间因果联系方面的优势,并讨论了啮齿动物视觉皮质中运动和视觉信号的整合。然后我们转向内侧内嗅皮质(MEC),据认为在这里会利用自我运动来更新位置估计。我们关注到MEC自我运动信息的几个关键来源:提供运动速度信息的内侧隔区;其输入越来越被认为对位置和速度调谐的MEC细胞都至关重要的视觉皮质;以及头部方向系统,它是自我运动估计方向信息的主要来源。这些输入在MEC中创建了大量多样的自我运动编码,而MEC网格细胞如何整合这些自我运动编码以估计位置仍然备受关注。然而,这些计算中使用了哪些信号以及它们的整合机制仍存在争议。我们最后提出了未来的实验,这些实验可能会加深我们对编码自我运动和位置的MEC细胞之间相互作用的理解,并阐明这些细胞的活动与空间感知之间的关系。

相似文献

1
Self-motion processing in visual and entorhinal cortices: inputs, integration, and implications for position coding.
J Neurophysiol. 2018 Oct 1;120(4):2091-2106. doi: 10.1152/jn.00686.2017. Epub 2018 Aug 8.
2
Medial entorhinal cortex and medial septum contribute to self-motion-based linear distance estimation.
Brain Struct Funct. 2017 Aug;222(6):2727-2742. doi: 10.1007/s00429-017-1368-4. Epub 2017 Feb 4.
3
Distance-tuned neurons drive specialized path integration calculations in medial entorhinal cortex.
Cell Rep. 2021 Sep 7;36(10):109669. doi: 10.1016/j.celrep.2021.109669.
4
A non-canonical visual cortical-entorhinal pathway contributes to spatial navigation.
Nat Commun. 2024 May 15;15(1):4122. doi: 10.1038/s41467-024-48483-y.
6
Neurons in Primate Entorhinal Cortex Represent Gaze Position in Multiple Spatial Reference Frames.
J Neurosci. 2018 Mar 7;38(10):2430-2441. doi: 10.1523/JNEUROSCI.2432-17.2018. Epub 2018 Jan 31.
8
Conjunctive representation of position, direction, and velocity in entorhinal cortex.
Science. 2006 May 5;312(5774):758-62. doi: 10.1126/science.1125572.
9
Spatial navigation signals in rodent visual cortex.
Curr Opin Neurobiol. 2021 Apr;67:163-173. doi: 10.1016/j.conb.2020.11.004. Epub 2020 Dec 25.
10
Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation.
Nat Neurosci. 2018 Aug;21(8):1096-1106. doi: 10.1038/s41593-018-0189-y. Epub 2018 Jul 23.

引用本文的文献

1
Multisensory coding of self-motion and its contribution to navigation.
Nat Rev Neurosci. 2025 Sep 15. doi: 10.1038/s41583-025-00970-x.
2
Neural circuits for goal-directed navigation across species.
Trends Neurosci. 2024 Nov;47(11):904-917. doi: 10.1016/j.tins.2024.09.005. Epub 2024 Oct 10.
3
Tunnel motion: Pupil dilations to optic flow within illusory dark holes.
Perception. 2024 Oct;53(10):730-745. doi: 10.1177/03010066241270493. Epub 2024 Aug 28.
4
Retrosplenial inputs drive visual representations in the medial entorhinal cortex.
Cell Rep. 2024 Jul 23;43(7):114470. doi: 10.1016/j.celrep.2024.114470. Epub 2024 Jul 9.
5
A non-canonical visual cortical-entorhinal pathway contributes to spatial navigation.
Nat Commun. 2024 May 15;15(1):4122. doi: 10.1038/s41467-024-48483-y.
6
Retrosplenial inputs drive diverse visual representations in the medial entorhinal cortex.
bioRxiv. 2023 Oct 4:2023.10.03.560642. doi: 10.1101/2023.10.03.560642.
7
Auditory cortex ensembles jointly encode sound and locomotion speed to support sound perception during movement.
PLoS Biol. 2023 Aug 31;21(8):e3002277. doi: 10.1371/journal.pbio.3002277. eCollection 2023 Aug.
8
Excitatory-inhibitory recurrent dynamics produce robust visual grids and stable attractors.
Cell Rep. 2022 Dec 13;41(11):111777. doi: 10.1016/j.celrep.2022.111777.
9
Are Grid-Like Representations a Component of All Perception and Cognition?
Front Neural Circuits. 2022 Jul 14;16:924016. doi: 10.3389/fncir.2022.924016. eCollection 2022.

本文引用的文献

1
Spontaneous behaviors drive multidimensional, brainwide activity.
Science. 2019 Apr 19;364(6437):255. doi: 10.1126/science.aav7893. Epub 2019 Apr 18.
2
Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation.
Nat Neurosci. 2018 Aug;21(8):1096-1106. doi: 10.1038/s41593-018-0189-y. Epub 2018 Jul 23.
4
Distinct Contributions of Mesencephalic Locomotor Region Nuclei to Locomotor Control in the Freely Behaving Mouse.
Curr Biol. 2018 Mar 19;28(6):884-901.e3. doi: 10.1016/j.cub.2018.02.007. Epub 2018 Mar 8.
5
Midbrain circuits that set locomotor speed and gait selection.
Nature. 2018 Jan 25;553(7689):455-460. doi: 10.1038/nature25448. Epub 2018 Jan 17.
6
Impaired path integration in mice with disrupted grid cell firing.
Nat Neurosci. 2018 Jan;21(1):81-91. doi: 10.1038/s41593-017-0039-3. Epub 2017 Dec 11.
7
A Sensorimotor Circuit in Mouse Cortex for Visual Flow Predictions.
Neuron. 2017 Dec 6;96(5):1204. doi: 10.1016/j.neuron.2017.11.009.
8
Theta Oscillations in the Human Medial Temporal Lobe during Real-World Ambulatory Movement.
Curr Biol. 2017 Dec 18;27(24):3743-3751.e3. doi: 10.1016/j.cub.2017.10.062. Epub 2017 Nov 30.
9
Fully integrated silicon probes for high-density recording of neural activity.
Nature. 2017 Nov 8;551(7679):232-236. doi: 10.1038/nature24636.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验