Centre for Biomolecular Sciences, School of Biology, University of St Andrews, St Andrews, UK.
Rev Med Virol. 2018 Nov;28(6):e2001. doi: 10.1002/rmv.2001. Epub 2018 Aug 9.
Oligopeptide "2A" and "2A-like" sequences ("2As"; 18-25aa) are found in a range of RNA virus genomes controlling protein biogenesis through "recoding" of the host-cell translational apparatus. Insertion of multiple 2As within a single open reading frame (ORF) produces multiple proteins; hence, 2As have been used in a very wide range of biotechnological and biomedical applications. During translation, these 2A peptide sequences mediate a eukaryote-specific, self-"cleaving" event, termed "ribosome skipping" with very high efficiency. A particular advantage of using 2As is the ability to simultaneously translate a number of proteins at an equal level in all eukaryotic systems although, naturally, final steady-state levels depend upon other factors-notably protein stability. By contrast, the use of internal ribosome entry site elements for co-expression results in an unbalanced expression due to the relative inefficiency of internal initiation. For example, a 1:1 ratio is of particular importance for the biosynthesis of the heavy-chain and light-chain components of antibodies: highly valuable as therapeutic proteins. Furthermore, each component of these "artificial polyprotein" systems can be independently targeted to different sub-cellular sites. The potential of this system was vividly demonstrated by concatenating multiple gene sequences, linked via 2A sequences, into a single, long, ORF-a polycistronic construct. Here, ORFs comprising the biosynthetic pathways for violacein (five gene sequences) and β-carotene (four gene sequences) were concatenated into a single cistron such that all components were co-expressed in the yeast Pichia pastoris. In this review, we provide useful information on 2As to serve as a guide for future utilities of this co-expression technology in basic research, biotechnology, and clinical applications.
寡肽“2A”和“2A 样”序列(“2As”;18-25 个氨基酸)存在于一系列控制蛋白质生物发生的 RNA 病毒基因组中,通过“重编码”宿主细胞翻译装置来实现。在单个开放阅读框(ORF)中插入多个 2A 会产生多个蛋白质;因此,2A 已广泛应用于生物技术和生物医学应用。在翻译过程中,这些 2A 肽序列介导一种真核生物特有的、自我“切割”事件,称为“核糖体跳跃”,效率非常高。使用 2A 的一个特别优势是能够在所有真核系统中以相同的水平同时翻译多个蛋白质,尽管最终的稳定状态水平取决于其他因素——特别是蛋白质稳定性。相比之下,使用内部核糖体进入位点元件进行共表达会导致表达不平衡,因为内部起始效率相对较低。例如,对于抗体的重链和轻链成分的生物合成,1:1 的比例尤为重要:作为治疗性蛋白质非常有价值。此外,这些“人工多蛋白”系统的每个组件都可以独立靶向不同的亚细胞部位。通过将多个基因序列通过 2A 序列连接成单个长 ORF——多顺反子构建体,生动地展示了该系统的潜力。在这里,包含生物合成途径的 ORFs 是紫罗兰酮(五个基因序列)和β-胡萝卜素(四个基因序列)通过 2A 序列连接成一个顺反子,使得所有成分都在酵母巴斯德毕赤酵母中共同表达。在这篇综述中,我们提供了有关 2A 的有用信息,以作为未来在基础研究、生物技术和临床应用中使用这种共表达技术的指南。