Suppr超能文献

C 种硫酸盐代谢受根系控制,并与丝氨酸生物合成有关。

Sulfate Metabolism in C Species Is Controlled by the Root and Connected to Serine Biosynthesis.

机构信息

Botanical Institute, University of Cologne, 50674 Cologne, Germany.

Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany.

出版信息

Plant Physiol. 2018 Oct;178(2):565-582. doi: 10.1104/pp.18.00520. Epub 2018 Aug 13.

Abstract

The evolution of C photosynthesis led to an increase in carbon assimilation rates and plant growth compared to C photosynthetic plants. This enhanced plant growth, in turn, affects the requirement for soil-derived mineral nutrients. However, mineral plant nutrition has scarcely been considered in connection with C photosynthesis. Sulfur is crucial for plant growth and development, and preliminary studies in the genus suggested metabolic differences in sulfate assimilation along the C evolutionary trajectory. Here, we show that in controlled conditions, foliar accumulation of the reduced sulfur compounds Cys and glutathione (GSH) increased with progressing establishment of the C photosynthetic cycle in different species. An enhanced demand for reduced sulfur in C species is reflected in high rates of [S]sulfate incorporation into GSH upon sulfate deprivation and increased GSH turnover as a reaction to the inhibition of GSH synthesis. Expression analyses indicate that the γ-glutamyl cycle is crucial for the recycling of GSH in C species. Sulfate reduction and GSH synthesis seems to be preferentially localized in the roots of C species, which might be linked to its colocalization with the phosphorylated pathway of Ser biosynthesis. Interspecies grafting experiments of (C) and (C) revealed that the root system primarily controls sulfate acquisition, GSH synthesis, and sulfate and metabolite allocation in C and C plants. This study thus shows that evolution of C photosynthesis resulted in a wide range of adaptations of sulfur metabolism and points out the need for broader studies on importance of mineral nutrition for C plants.

摘要

C 光合作用的进化导致与 C 光合作用植物相比,碳同化率和植物生长增加。这种增强的植物生长反过来又影响了对土壤衍生矿质养分的需求。然而,矿质植物营养在与 C 光合作用的联系上几乎没有被考虑过。硫对植物的生长和发育至关重要,对属的初步研究表明,硫酸盐同化在 C 进化轨迹上存在代谢差异。在这里,我们表明,在控制条件下,不同 物种中 C 光合作用循环建立的进展与叶片中还原态硫化合物半胱氨酸和谷胱甘肽(GSH)的积累增加有关。C 物种对还原态硫的需求增加反映在硫酸盐剥夺后[ S]硫酸盐掺入 GSH 的高速率和 GSH 周转增加,以应对 GSH 合成的抑制。表达分析表明,γ-谷氨酰循环对 C 物种中 GSH 的循环利用至关重要。硫酸盐还原和 GSH 合成似乎优先定位于 C 物种的根部,这可能与其与 Ser 生物合成的磷酸化途径的共定位有关。 和 (C)物种的种间嫁接实验表明,根系主要控制 C 和 C 植物中的硫酸盐获取、GSH 合成以及硫酸盐和代谢物的分配。因此,这项研究表明,C 光合作用的进化导致了硫代谢的广泛适应,并指出需要更广泛地研究矿质营养对 C 植物的重要性。

相似文献

引用本文的文献

8
Plant sulphur metabolism is stimulated by photorespiration.植物的硫代谢受光呼吸的刺激。
Commun Biol. 2019 Oct 16;2:379. doi: 10.1038/s42003-019-0616-y. eCollection 2019.
10
Atmospheric HS: Impact on Plant Functioning.大气中的硫化氢:对植物功能的影响。
Front Plant Sci. 2019 Jun 11;10:743. doi: 10.3389/fpls.2019.00743. eCollection 2019.

本文引用的文献

1
The evolution of C photosynthesis.C4光合作用的进化。
New Phytol. 2004 Feb;161(2):341-370. doi: 10.1111/j.1469-8137.2004.00974.x.
2
The Impacts of Fluctuating Light on Crop Performance.波动光照对作物表现的影响。
Plant Physiol. 2018 Feb;176(2):990-1003. doi: 10.1104/pp.17.01234. Epub 2017 Nov 30.
4
The Use of Grafting to Study Systemic Signaling in Plants.利用嫁接研究植物中的系统信号。
Plant Cell Physiol. 2017 Aug 1;58(8):1291-1301. doi: 10.1093/pcp/pcx098.
9
Photorespiration connects C3 and C4 photosynthesis.光呼吸连接了C3和C4光合作用。
J Exp Bot. 2016 May;67(10):2953-62. doi: 10.1093/jxb/erw056. Epub 2016 Feb 22.
10
Glutathione--linking cell proliferation to oxidative stress.谷胱甘肽——将细胞增殖与氧化应激联系起来。
Free Radic Biol Med. 2015 Dec;89:1154-64. doi: 10.1016/j.freeradbiomed.2015.09.023. Epub 2015 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验