Suppr超能文献

用于单图像超分辨率的深度递归低频和高频融合网络

Deeply Recursive Low- and High-Frequency Fusing Networks for Single Image Super-Resolution.

作者信息

Yang Cheng, Lu Guanming

机构信息

College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China.

School of Cyberspace Security, Changzhou College of Information Technology, Changzhou 213164, China.

出版信息

Sensors (Basel). 2020 Dec 18;20(24):7268. doi: 10.3390/s20247268.

Abstract

With the development of researches on single image super-resolution (SISR) based on convolutional neural networks (CNN), the quality of recovered images has been remarkably promoted. Since then, many deep learning-based models have been proposed, which have outperformed the traditional SISR algorithms. According to the results of extensive experiments, the feature representations of the model can be enhanced by increasing the depth and width of the network, which can ultimately improve the image reconstruction quality. However, a larger network generally consumes more computational and memory resources, making it difficult to train the network and increasing the prediction time. In view of the above problems, a novel deeply-recursive low- and high-frequency fusing network (DRFFN) for SISR tasks is proposed in this paper, which adopts the structure of parallel branches to extract the low- and high-frequency information of the image, respectively. The different complexities of the branches can reflect the frequency characteristic of the diverse image information. Moreover, an effective channel-wise attention mechanism based on variance (VCA) is designed to make the information distribution of each feature map more reasonably with different variances. Owing to model structure (i.e., cascading recursive learning of recursive units), DRFFN and DRFFN-L are very compact, where the weights are shared by all convolutional recursions. Comprehensive benchmark evaluations in standard benchmark datasets well demonstrate that DRFFN outperforms the most existing models and has achieved competitive, quantitative, and visual results.

摘要

随着基于卷积神经网络(CNN)的单图像超分辨率(SISR)研究的发展,恢复图像的质量得到了显著提升。从那时起,许多基于深度学习的模型被提出,它们的性能超过了传统的SISR算法。根据大量实验结果,通过增加网络的深度和宽度可以增强模型的特征表示,这最终可以提高图像重建质量。然而,更大的网络通常会消耗更多的计算和内存资源,使得网络训练变得困难,并增加预测时间。针对上述问题,本文提出了一种用于SISR任务的新型深度递归低频和高频融合网络(DRFFN),它采用并行分支结构分别提取图像的低频和高频信息。分支的不同复杂度可以反映不同图像信息的频率特征。此外,设计了一种基于方差的有效通道注意力机制(VCA),以使每个特征图的信息分布根据不同方差更加合理。由于模型结构(即递归单元的级联递归学习),DRFFN和DRFFN-L非常紧凑,其中所有权重由所有卷积递归共享。在标准基准数据集上的综合基准评估充分表明,DRFFN优于大多数现有模型,并取得了具有竞争力的定量和视觉效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941f/7766830/12da79a28993/sensors-20-07268-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验