Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA.
Gastrointest Endosc. 2019 Jan;89(1):115-123. doi: 10.1016/j.gie.2018.08.012. Epub 2018 Aug 17.
Studies from our group and others demonstrate residual fluid in 42% to 95% of endoscope working channels despite high-level disinfection and drying. Additionally, persistent simethicone has been reported in endoscope channels despite reprocessing.
Endoscopy was performed by using water or varied simethicone concentrations (0.5%, 1%, 3%) for flushing. After high-level disinfection/drying, we inspected endoscope working channels for retained fluid by using the SteriCam borescope. Working channel rinsates were evaluated for adenosine triphosphate (ATP) bioluminescence. Fourier transform infrared spectroscopy was performed on fluid droplets gathered from a colonoscope in which low-concentration simethicone was used.
Use of medium/high concentrations of simethicone resulted in a higher mean number of fluid droplets (13.5/17.3 droplets, respectively) and ATP bioluminescence values (20.6/23 relative light units [RLUs], respectively) compared with that of procedures using only water (6.3 droplets/10.9 RLUs; P < .001). Two automated endoscope reprocessing cycles resulted in return of a fluid droplet and ATP bioluminescence values to ranges similar to that of procedures that used only water (P = .56). Low-concentration simethicone did not increase the mean residual fluid or ATP bioluminescence values compared with procedures that used only water (5.8 droplets/15.6 RLUs). Fourier transform infrared analysis revealed simethicone in the endoscope working channel after use of low-concentration simethicone.
Use of medium/high concentrations of simethicone is associated with retention of increased fluid droplets and higher ATP bioluminescence values in endoscope working channels, compared with endoscopes in which water or low concentration simethicone was used. However, simethicone is detectable in endoscopes despite reprocessing, even when it is utilized in low concentrations. Our data suggest that when simethicone is used, it should be used in the lowest concentration possible. Facilities may consider 2 automated endoscope reprocessor cycles for reprocessing of endoscopes when simethicone has been used.
我们团队和其他团队的研究表明,即使经过高水平消毒和干燥,内镜工作通道仍有 42%至 95%残留液体。此外,尽管进行了再处理,但仍有持续的二甲硅油存在于内镜通道中。
通过使用水或不同浓度的二甲硅油(0.5%、1%、3%)冲洗进行内镜检查。高水平消毒/干燥后,使用 SteriCam 硬管镜检查内镜工作通道中是否有残留液体。评估工作通道冲洗液中的三磷酸腺苷(ATP)生物发光。对使用低浓度二甲硅油的结肠镜中收集的液滴进行傅里叶变换红外光谱分析。
与仅使用水的程序相比,使用中/高浓度二甲硅油可导致更多的液滴(分别为 13.5/17.3 个液滴)和 ATP 生物发光值(分别为 20.6/23 相对光单位[RLU])(P<0.001)。两个自动内镜再处理循环使液滴和 ATP 生物发光值恢复到与仅使用水的程序相似的范围(P=0.56)。与仅使用水的程序相比,低浓度二甲硅油并未增加残留液体的平均量或 ATP 生物发光值(5.8 个液滴/15.6 RLU)。傅里叶变换红外分析显示,在使用低浓度二甲硅油后,内镜工作通道中存在二甲硅油。
与使用水或低浓度二甲硅油的内镜相比,使用中/高浓度二甲硅油与内镜工作通道中保留更多的液滴和更高的 ATP 生物发光值相关。然而,即使进行了再处理,即使使用低浓度的二甲硅油,也可以在内镜中检测到二甲硅油。我们的数据表明,当使用二甲硅油时,应尽可能使用最低浓度。当使用二甲硅油时,医疗机构可能需要考虑对内镜进行 2 个自动内镜再处理循环。