Suppr超能文献

暴露于 1800MHz 射频信号的神经元网络中自发性电活动的减少。

Decreased spontaneous electrical activity in neuronal networks exposed to radiofrequency 1,800 MHz signals.

机构信息

Laboratory of the Integration from Materials to Systems, UMR 5218, CNRS, University of Bordeaux , Talence , France.

Center of Synaptic Neuroscience and Technology, Istituto Italiano di Technologia , Genoa , Italy.

出版信息

J Neurophysiol. 2018 Dec 1;120(6):2719-2729. doi: 10.1152/jn.00589.2017. Epub 2018 Aug 22.

Abstract

The rapid development of wireless communications has raised questions about their potential health risks. So far, the only identified biological effects of radiofrequency fields (RF) are known to be caused by heating, but the issue of potential nonthermal biological effects, especially on the central nervous system (CNS), remains open. We previously reported a decrease in the firing and bursting rates of neuronal cultures exposed to a Global System for Mobile (GSM) RF field at 1,800 MHz for 3 min (Moretti D, Garenne A, Haro E, Poulleier de Gannes F, Lagroye I, Lévêque P, Veyret B, Lewis N. Bioelectromagnetics 34: 571-578, 2013). The aim of the present work was to assess the dose-response relationship for this effect and also to identify a potential differential response elicited by pulse-modulated GSM and continuous-wave (CW) RF fields. Spontaneous bursting activity of neuronal cultures from rat embryonic cortices was recorded using 60-electrode multielectrode arrays (MEAs). At 17-28 days in vitro, the neuronal cultures were subjected to 15-min RF exposures, at specific absorption rates (SAR) ranging from 0.01 to 9.2 W/kg. Both GSM and CW signals elicited a clear decrease in bursting rate during the RF exposure phase. This effect became more marked with increasing SAR and lasted even beyond the end of exposure for the highest SAR levels. Moreover, the amplitude of the effect was greater with the GSM signal. Altogether, our experimental findings provide evidence for dose-dependent effects of RF signals on the bursting rate of neuronal cultures and suggest that part of the mechanism is nonthermal. NEW & NOTEWORTHY In this study, we investigated the effects of some radiofrequency (RF) exposure parameters on the electrical activity of neuronal cultures. We detected a clear decrease in bursting activity, dependent on exposure duration. The amplitude of this effect increased with the specific absorption rate (SAR) level and was greater with Global System for Mobile signal than with continuous-wave signal, at the same average SAR. Our experiment provides unique evidence of a decrease in electrical activity of cortical neuronal cultures during RF exposure.

摘要

无线通信的快速发展引发了人们对其潜在健康风险的关注。到目前为止,已知射频场(RF)的唯一生物学效应是由加热引起的,但潜在的非热生物效应问题,特别是对中枢神经系统(CNS)的影响,仍然存在争议。我们之前报道过,在 1800MHz 的全球移动通信系统(GSM)RF 场中暴露 3 分钟后,神经元培养物的放电和爆发率下降(Moretti D、Garenne A、Haro E、Poulleier de Gannes F、Lagroye I、Lévêque P、Veyret B、Lewis N. Bioelectromagnetics 34: 571-578, 2013)。本研究旨在评估这种效应的剂量反应关系,并确定脉冲调制 GSM 和连续波(CW)RF 场引起的潜在差异反应。使用 60 电极多电极阵列(MEA)记录来自大鼠胚胎皮质的神经元培养物的自发爆发活动。在体外 17-28 天,将神经元培养物暴露于特定吸收率(SAR)范围为 0.01 至 9.2 W/kg 的 15 分钟 RF 下。GSM 和 CW 信号都在 RF 暴露期间明显降低了爆发率。随着 SAR 的增加,这种效应变得更加明显,即使在最高 SAR 水平下,暴露结束后仍持续存在。此外,GSM 信号的效应幅度更大。总之,我们的实验结果为 RF 信号对神经元培养物爆发率的剂量依赖性效应提供了证据,并表明部分机制是非热的。本研究调查了一些射频(RF)暴露参数对神经元培养物电活动的影响。我们检测到爆发活动的明显降低,这与暴露时间有关。该效应的幅度随着比吸收率(SAR)水平的增加而增加,并且在相同平均 SAR 下,GSM 信号比连续波信号的效应幅度更大。我们的实验提供了独特的证据,表明在 RF 暴露期间皮质神经元培养物的电活动降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验