Suppr超能文献

分析模块性和整合性表明,蜻蜓翅膀脉序的进化主要是为了适应功能需求。

Analysis of modularity and integration suggests evolution of dragonfly wing venation mainly in response to functional demands.

机构信息

Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany

出版信息

J R Soc Interface. 2018 Aug;15(145). doi: 10.1098/rsif.2018.0277.

Abstract

Insect wings show a high variability in wing venation. Selection for function, developmental pathways and phylogeny likely influenced wing vein diversification, however, quantitative data to estimate these influences and their interplay are missing. Here, it is tested how dragonfly wing vein configuration is influenced by functional demands, development, phylogeny and allometry using the concepts of modularity and integration. In an evolutionary context, modules are sets of characters that evolve in relative independence to other characters, while integration refers to a high degree of association between subparts of a structure. Results show allometric and phylogenetic signal in the wing shape variation, however, patterns of integration and modularity are not influenced by these two factors. Overall, dragonfly wings are highly integrated structures with almost no modular signal. Configuration changes in one wing vein or wing area thus influence wing shape as a whole. Moreover, the fore- and hindwings correlate with each other in their evolutionary shape variation supporting biomechanical data of wing interdependence. Despite the overall high degree of evolutionary integration, functional hypotheses of modularity could be confirmed for two wing areas, the arculus-triangle complex at the base of the wing which is responsible for passive wing folding especially during flapping flight and the location of the pterostigma, a coloured wing cell which is more heavy that other wing cells and passively regulates wing pitch as well as critical flight speeds during gliding. Although evolving as distinct modules, these specific vein regions also show high integration and evolve at the same rates like the whole wing which suggests an influence of these structures on the shape evolution of the rest of the wing. Their biomechanical role as passive regulators of wing corrugation and wing pitch suggests that these structures decisively influenced the evolution of advanced modern flight styles and explains their retention once they had evolved early within the lineage Odonatoptera.

摘要

昆虫翅膀的翅脉表现出高度的可变性。功能选择、发育途径和系统发育可能影响了翅脉的多样化,但缺乏定量数据来估计这些影响及其相互作用。在这里,使用模块性和整体性的概念来测试蜻蜓翅膀脉序结构是如何受到功能需求、发育、系统发育和比例关系的影响的。在进化背景下,模块是一组相对独立于其他特征进化的特征,而整合是指结构的子部分之间高度关联。结果表明,翅膀形状的变化受到比例关系和系统发育的影响,但整合和模块性模式不受这两个因素的影响。总的来说,蜻蜓翅膀是高度整合的结构,几乎没有模块信号。因此,一个翅脉或翅区的构型变化会影响整个翅膀的形状。此外,前翅和后翅在其进化形状变化中相互关联,支持翅膀相互依存的生物力学数据。尽管整体上具有高度的进化整合性,但可以为两个翅膀区域的功能假说模块性提供证实,一个是翅膀基部的 arcus-triangle 复合体,负责被动折叠翅膀,特别是在拍打飞行期间,另一个是有色翅膀细胞 pterostigma 的位置,它比其他翅膀细胞更重,被动调节翅膀俯仰角以及滑翔时的关键飞行速度。尽管这些特定的脉区作为独特的模块进化,但它们也表现出高度的整合性,并以与整个翅膀相同的速度进化,这表明这些结构对翅膀其余部分的形状进化有影响。它们作为翅膀波纹和俯仰角的被动调节者的生物力学作用表明,这些结构对先进的现代飞行方式的进化有决定性的影响,并解释了它们一旦在 Odonatoptera 谱系中早期进化就保留下来的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3236/6127186/5d97bb180b5c/rsif20180277-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验