Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
Univ. Bordeaux, LaBRI, UMR 5800, PICTURA, F-33400 Talence, France; CNRS, LaBRI, UMR 5800, PICTURA, F-33400 Talence, France.
Comput Med Imaging Graph. 2018 Nov;69:43-51. doi: 10.1016/j.compmedimag.2018.05.001. Epub 2018 May 3.
Accurate quantification of white matter hyperintensities (WMH) from Magnetic Resonance Imaging (MRI) is a valuable tool for the analysis of normal brain ageing or neurodegeneration. Reliable automatic extraction of WMH lesions is challenging due to their heterogeneous spatial occurrence, their small size and their diffuse nature. In this paper, we present an automatic method to segment these lesions based on an ensemble of overcomplete patch-based neural networks. The proposed method successfully provides accurate and regular segmentations due to its overcomplete nature while minimizing the segmentation error by using a boosted ensemble of neural networks. The proposed method compared favourably to state of the art techniques using two different neurodegenerative datasets.
准确量化磁共振成像(MRI)中的脑白质高信号(WMH)是分析正常脑老化或神经退行性变的有用工具。由于 WMH 病变的空间异质性、体积小和弥漫性,可靠地自动提取这些病变具有挑战性。在本文中,我们提出了一种基于过完备基于补丁的神经网络集成的自动分割这些病变的方法。由于其过完备的性质,所提出的方法成功地提供了准确和规则的分割,同时通过使用增强的神经网络集成最小化分割误差。所提出的方法在两个不同的神经退行性变数据集上与最先进的技术进行了比较。