Research Group of Quantitative Psychology and Individual Differences, KU Leuven, Leuven, Belgium.
Methodology of Educational Sciences Research Group, KU Leuven, Leuven, Belgium.
Behav Res Methods. 2024 Oct;56(7):7152-7167. doi: 10.3758/s13428-024-02413-4. Epub 2024 May 8.
Researchers increasingly study short-term dynamic processes that evolve within single individuals using N = 1 studies. The processes of interest are typically captured by fitting a VAR(1) model to the resulting data. A crucial question is how to perform sample-size planning and thus decide on the number of measurement occasions that are needed. The most popular approach is to perform a power analysis, which focuses on detecting the effects of interest. We argue that performing sample-size planning based on out-of-sample predictive accuracy yields additional important information regarding potential overfitting of the model. Predictive accuracy quantifies how well the estimated VAR(1) model will allow predicting unseen data from the same individual. We propose a new simulation-based sample-size planning method called predictive accuracy analysis (PAA), and an associated Shiny app. This approach makes use of a novel predictive accuracy metric that accounts for the multivariate nature of the prediction problem. We showcase how the values of the different VAR(1) model parameters impact power and predictive accuracy-based sample-size recommendations using simulated data sets and real data applications. The range of recommended sample sizes is smaller for predictive accuracy analysis than for power analysis.
研究人员越来越多地使用 N = 1 研究来研究单个个体内部演变的短期动态过程。感兴趣的过程通常通过对所得数据拟合 VAR(1)模型来捕获。一个关键问题是如何进行样本量规划,从而确定所需的测量次数。最流行的方法是进行功效分析,该分析侧重于检测感兴趣的效果。我们认为,基于样本外预测准确性进行样本量规划会产生关于模型潜在过度拟合的额外重要信息。预测准确性量化了估计的 VAR(1)模型将允许从同一个体预测未见数据的程度。我们提出了一种新的基于模拟的样本量规划方法,称为预测准确性分析(PAA),并提供了一个相关的 Shiny 应用程序。该方法利用一种新的预测准确性度量标准,该标准考虑了预测问题的多元性质。我们使用模拟数据集和真实数据应用程序展示了不同 VAR(1)模型参数的值如何影响基于功效和预测准确性的样本量建议。与功效分析相比,预测准确性分析的推荐样本量范围较小。