Suppr超能文献

开发生物传感器计算机应用程序,以评估感官评价员的生理和情绪反应。

Development of a Biosensory Computer Application to Assess Physiological and Emotional Responses from Sensory Panelists.

机构信息

Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.

出版信息

Sensors (Basel). 2018 Sep 5;18(9):2958. doi: 10.3390/s18092958.

Abstract

In sensory evaluation, there have been many attempts to obtain responses from the autonomic nervous system (ANS) by analyzing heart rate, body temperature, and facial expressions. However, the methods involved tend to be intrusive, which interfere with the consumers' responses as they are more aware of the measurements. Furthermore, the existing methods to measure different ANS responses are not synchronized among them as they are measured independently. This paper discusses the development of an integrated camera system paired with an Android PC application to assess sensory evaluation and biometric responses simultaneously in the Cloud, such as heart rate, blood pressure, facial expressions, and skin-temperature changes using video and thermal images acquired by the integrated system and analyzed through computer vision algorithms written in Matlab, and FaceReader. All results can be analyzed through customized codes for multivariate data analysis, based on principal component analysis and cluster analysis. Data collected can be also used for machine-learning modeling based on biometrics as inputs and self-reported data as targets. Based on previous studies using this integrated camera and analysis system, it has shown to be a reliable, accurate, and convenient technique to complement the traditional sensory analysis of both food and nonfood products to obtain more information from consumers and/or trained panelists.

摘要

在感官评价中,人们已经尝试了许多方法来通过分析心率、体温和面部表情来从自主神经系统(ANS)获得反应。然而,所涉及的方法往往具有侵入性,因为消费者更意识到这些测量,所以会干扰他们的反应。此外,现有的测量不同 ANS 反应的方法彼此之间没有同步,因为它们是独立测量的。本文讨论了一种集成摄像头系统的开发,该系统与 Android PC 应用程序配对,可以同时在云中评估感官评价和生物识别反应,例如心率、血压、面部表情和皮肤温度变化,使用集成系统获取的视频和热图像,并通过在 Matlab 和 FaceReader 中编写的计算机视觉算法进行分析。所有结果都可以通过基于主成分分析和聚类分析的多元数据分析定制代码进行分析。收集的数据也可以用于基于生物特征的机器学习建模,将生物特征作为输入,自我报告的数据作为目标。基于使用这种集成摄像头和分析系统的先前研究,它已被证明是一种可靠、准确和方便的技术,可以补充食品和非食品产品的传统感官分析,以从消费者和/或训练有素的品评员那里获得更多信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c60/6164119/e6e41a3b775e/sensors-18-02958-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验