Xiong Wei, Lo Jonathan, Chou Katherine J, Wu Chao, Magnusson Lauren, Dong Tao, Maness PinChing
National Renewable Energy Laboratory, Golden, CO, United States.
Front Microbiol. 2018 Aug 23;9:1947. doi: 10.3389/fmicb.2018.01947. eCollection 2018.
Cellulolytic bacteria have the potential to perform lignocellulose hydrolysis and fermentation simultaneously. The metabolic pathways of these bacteria, therefore, require more comprehensive and quantitative understanding. Using isotope tracer, gas chromatography-mass spectrometry, and metabolic flux modeling, we decipher the metabolic network of , a model cellulolytic bacterium which represents as an attractive platform for conversion of lignocellulose to dedicated products. We uncover that the Embden-Meyerhof-Parnas (EMP) pathway is the predominant glycolytic route whereas the Entner-Doudoroff (ED) pathway and oxidative pentose phosphate pathway are inactive. We also observe that 's TCA cycle is initiated by both - and citrate synthase, and it is disconnected between 2-oxoglutarate and oxaloacetate in the oxidative direction; uses a citramalate shunt to synthesize isoleucine; and both the one-carbon pathway and the malate shunt are highly active in this bacterium. To gain a quantitative understanding, we further formulate a fluxome map to quantify the metabolic fluxes through central metabolic pathways. This work represents the first global investigation of the principal carbon metabolism of . Our results elucidate the unique structure of metabolic network in this cellulolytic bacterium and demonstrate the capability of isotope-assisted metabolite studies in understanding microbial metabolism of industrial interests.
纤维素分解菌有潜力同时进行木质纤维素水解和发酵。因此,这些细菌的代谢途径需要更全面和定量的了解。利用同位素示踪、气相色谱 - 质谱联用和代谢通量建模,我们解析了一种典型纤维素分解菌的代谢网络,该菌是将木质纤维素转化为特定产品的一个有吸引力的平台。我们发现,糖酵解途径中占主导地位的是糖酵解途径,而Entner - Doudoroff(ED)途径和磷酸戊糖氧化途径不活跃。我们还观察到,该菌的三羧酸循环由苹果酸合酶和柠檬酸合酶启动,并且在氧化方向上2 - 酮戊二酸和草酰乙酸之间是断开的;该菌利用柠檬酸分支合成异亮氨酸;并且一碳途径和苹果酸分支在这种细菌中都高度活跃。为了获得定量的理解,我们进一步制定了通量组图谱以量化通过中心代谢途径的代谢通量。这项工作代表了对该菌主要碳代谢的首次全面研究。我们的结果阐明了这种纤维素分解菌代谢网络的独特结构,并证明了同位素辅助代谢物研究在理解具有工业价值的微生物代谢方面的能力。