Huang Biwei, Zhang Kun, Lin Yizhu, Schölkopf Bernhard, Glymour Clark
Department of Philosophy, Carnegie Mellon University.
MPI for Intelligent Systems, Tübingen, Germany.
KDD. 2018 Aug;2018:1551-1560. doi: 10.1145/3219819.3220104.
Discovery of causal relationships from observational data is a fundamental problem. Roughly speaking, there are two types of methods for causal discovery, constraint-based ones and score-based ones. Score-based methods avoid the multiple testing problem and enjoy certain advantages compared to constraint-based ones. However, most of them need strong assumptions on the functional forms of causal mechanisms, as well as on data distributions, which limit their applicability. In practice the precise information of the underlying model class is usually unknown. If the above assumptions are violated, both spurious and missing edges may result. In this paper, we introduce generalized score functions for causal discovery based on the characterization of general (conditional) independence relationships between random variables, without assuming particular model classes. In particular, we exploit regression in RKHS to capture the dependence in a non-parametric way. The resulting causal discovery approach produces asymptotically correct results in rather general cases, which may have nonlinear causal mechanisms, a wide class of data distributions, mixed continuous and discrete data, and multidimensional variables. Experimental results on both synthetic and real-world data demonstrate the efficacy of our proposed approach.
从观测数据中发现因果关系是一个基本问题。大致来说,因果发现方法有两种类型,基于约束的方法和基于分数的方法。基于分数的方法避免了多重检验问题,并且与基于约束的方法相比具有一定优势。然而,它们中的大多数需要对因果机制的函数形式以及数据分布做出很强的假设,这限制了它们的适用性。在实际中,潜在模型类别的精确信息通常是未知的。如果违反了上述假设,可能会导致虚假边和缺失边。在本文中,我们基于随机变量之间一般(条件)独立关系的特征,引入用于因果发现的广义分数函数,而不假设特定的模型类别。特别是,我们利用再生核希尔伯特空间(RKHS)中的回归以非参数方式捕捉依赖性。由此产生的因果发现方法在相当一般的情况下产生渐近正确的结果,这些情况可能具有非线性因果机制、广泛的数据分布类别、混合的连续和离散数据以及多维变量。在合成数据和真实世界数据上的实验结果证明了我们提出的方法的有效性。