Suppr超能文献

一种基于图的方法,用于识别非小细胞肺癌患者术后肺癌复发的相关因素。

A Graph-Based Approach to Identify Factors Contributing to Postoperative Lung Cancer Recurrence among Patients with Non-Small-Cell Lung Cancer.

作者信息

Iyer Kartik, Ren Shangsi, Pu Lucy, Mazur Summer, Zhao Xiaoyan, Dhupar Rajeev, Pu Jiantao

机构信息

Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.

Department of Cardiothoracic Surgery, Division of Thoracic and Foregut Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.

出版信息

Cancers (Basel). 2023 Jul 3;15(13):3472. doi: 10.3390/cancers15133472.

Abstract

The accurate identification of the preoperative factors impacting postoperative cancer recurrence is crucial for optimizing neoadjuvant and adjuvant therapies and guiding follow-up treatment plans. We modeled the causal relationship between radiographical features derived from CT scans and the clinicopathologic factors associated with postoperative lung cancer recurrence and recurrence-free survival. A retrospective cohort of 363 non-small-cell lung cancer (NSCLC) patients who underwent lung resections with a minimum 5-year follow-up was analyzed. Body composition tissues and tumor features were quantified based on preoperative whole-body CT scans (acquired as a component of PET-CT scans) and chest CT scans, respectively. A novel causal graphical model was used to visualize the causal relationship between these factors. Variables were assessed using the intervention do-calculus adjustment (IDA) score. Direct predictors for recurrence-free survival included smoking history, T-stage, height, and intramuscular fat mass. Subcutaneous fat mass, visceral fat volume, and bone mass exerted the greatest influence on the model. For recurrence, the most significant variables were visceral fat volume, subcutaneous fat volume, and bone mass. Pathologic variables contributed to the recurrence model, with bone mass, TNM stage, and weight being the most important. Body composition, particularly adipose tissue distribution, significantly and causally impacted both recurrence and recurrence-free survival through interconnected relationships with other variables.

摘要

准确识别影响术后癌症复发的术前因素对于优化新辅助治疗和辅助治疗以及指导后续治疗计划至关重要。我们建立了一个模型,以研究CT扫描得出的影像学特征与术后肺癌复发及无复发生存相关的临床病理因素之间的因果关系。我们分析了一个回顾性队列,该队列包括363例接受肺切除术且至少随访5年的非小细胞肺癌(NSCLC)患者。身体组成组织和肿瘤特征分别基于术前全身CT扫描(作为PET-CT扫描的一部分获取)和胸部CT扫描进行量化。一种新型因果图模型用于直观显示这些因素之间的因果关系。使用干预性do-演算调整(IDA)评分对变量进行评估。无复发生存的直接预测因素包括吸烟史、T分期、身高和肌内脂肪量。皮下脂肪量、内脏脂肪体积和骨量对该模型影响最大。对于复发而言,最显著的变量是内脏脂肪体积、皮下脂肪量和骨量。病理变量对复发模型有贡献,其中骨量、TNM分期和体重最为重要。身体组成,尤其是脂肪组织分布,通过与其他变量的相互关联关系,对复发和无复发生存均产生了显著的因果影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4b0/10340686/72de86442400/cancers-15-03472-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验