Suppr超能文献

环境化学物类雌激素活性的药代动力学模型评价与优化。

Evaluation and Optimization of Pharmacokinetic Models for to Extrapolation of Estrogenic Activity for Environmental Chemicals.

机构信息

National Toxicology Program Division, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.

Integrated Laboratory Systems, Inc., Morrisville, North Carolina, USA.

出版信息

Environ Health Perspect. 2018 Sep;126(9):97001. doi: 10.1289/EHP1655.

Abstract

BACKGROUND

To effectively incorporate data into regulatory use, confidence must be established in the quantitative extrapolation of activity to relevant end points in animals or humans.

OBJECTIVE

Our goal was to evaluate and optimize to extrapolation (IVIVE) approaches using in vitro estrogen receptor (ER) activity to predict estrogenic effects measured in rodent uterotrophic studies.

METHODS

We evaluated three pharmacokinetic (PK) models with varying complexities to extrapolate to dosimetry for a group of 29 ER agonists, using data from validated [U.S. Environmental Protection Agency (U.S. EPA) ToxCast™ ER model] and (uterotrophic) methods. activity values were adjusted using mass-balance equations to estimate intracellular exposure via an enrichment factor (EF), and steady-state model calculations were adjusted using fraction of unbound chemical in the plasma ([Formula: see text]) to approximate bioavailability. Accuracy of each model-adjustment combination was assessed by comparing model predictions with lowest effect levels (LELs) from guideline uterotrophic studies.

RESULTS

We found little difference in model predictive performance based on complexity or route-specific modifications. Simple adjustments, applied to account for intracellular exposure (EF) or chemical bioavailability ([Formula: see text]), resulted in significant improvements in the predictive performance of all models.

CONCLUSION

Computational IVIVE approaches accurately estimate chemical exposure levels that elicit positive responses in the rodent uterotrophic bioassay. The simplest model had the best overall performance for predicting both oral (PPK_EF) and injection (PPK_[Formula: see text]) LELs from guideline uterotrophic studies, is freely available, and can be parameterized entirely using freely available tools. https://doi.org/10.1289/EHP1655.

摘要

背景

为了有效地将数据纳入监管用途,必须在定量外推动物或人类相关终点的活性方面建立信心。

目的

我们的目标是评估和优化使用体外雌激素受体(ER)活性来预测啮齿动物子宫增重研究中测量的雌激素效应的外推(IVIVE)方法。

方法

我们评估了三种具有不同复杂性的药代动力学(PK)模型,以推断一组 29 种 ER 激动剂的剂量-反应关系,使用来自验证的[美国环保署(美国环保署)ToxCast™ ER 模型]和[(子宫增重)方法的数据。使用质量平衡方程调整活性值,通过富集因子(EF)估计细胞内暴露,使用血浆中未结合化学物质的分数([公式:见文本])调整稳态模型计算,以近似生物利用度。通过将模型预测与指导方针子宫增重研究中的最低效应水平(LEL)进行比较,评估每种模型调整组合的准确性。

结果

我们发现,基于复杂性或特定于途径的修改,模型预测性能差异不大。简单的调整,用于考虑细胞内暴露(EF)或化学物质生物利用度([公式:见文本]),显著提高了所有模型的预测性能。

结论

计算 IVIVE 方法准确估计化学暴露水平,这些暴露水平在啮齿动物子宫增重生物测定中引发阳性反应。最简单的模型在预测指导方针子宫增重研究中的口服(PPK_EF)和注射(PPK_[公式:见文本])LEL 方面具有最佳的整体性能,是免费的,并且可以完全使用免费提供的工具进行参数化。https://doi.org/10.1289/EHP1655。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cec/6375436/f2b4dff1084a/ehp-126-097001-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验