Suppr超能文献

仿生心血管平台用于体外疾病建模和治疗验证。

Biomimetic cardiovascular platforms for in vitro disease modeling and therapeutic validation.

机构信息

Department of Chemical Engineering, Northeastern University, Boston, USA; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Zapopan, JAL, Mexico.

Department of Chemical Engineering, Northeastern University, Boston, USA.

出版信息

Biomaterials. 2019 Apr;198:78-94. doi: 10.1016/j.biomaterials.2018.08.010. Epub 2018 Aug 4.

Abstract

Bioengineered tissues have become increasingly more sophisticated owing to recent advancements in the fields of biomaterials, microfabrication, microfluidics, genetic engineering, and stem cell and developmental biology. In the coming years, the ability to engineer artificial constructs that accurately mimic the compositional, architectural, and functional properties of human tissues, will profoundly impact the therapeutic and diagnostic aspects of the healthcare industry. In this regard, bioengineered cardiac tissues are of particular importance due to the extremely limited ability of the myocardium to self-regenerate, as well as the remarkably high mortality associated with cardiovascular diseases worldwide. As novel microphysiological systems make the transition from bench to bedside, their implementation in high throughput drug screening, personalized diagnostics, disease modeling, and targeted therapy validation will bring forth a paradigm shift in the clinical management of cardiovascular diseases. Here, we will review the current state of the art in experimental in vitro platforms for next generation diagnostics and therapy validation. We will describe recent advancements in the development of smart biomaterials, biofabrication techniques, and stem cell engineering, aimed at recapitulating cardiovascular function at the tissue- and organ levels. In addition, integrative and multidisciplinary approaches to engineer biomimetic cardiovascular constructs with unprecedented human and clinical relevance will be discussed. We will comment on the implementation of these platforms in high throughput drug screening, in vitro disease modeling and therapy validation. Lastly, future perspectives will be provided on how these biomimetic platforms will aid in the transition towards patient centered diagnostics, and the development of personalized targeted therapeutics.

摘要

由于生物材料学、微制造、微流控学、基因工程、干细胞和发育生物学领域的最新进展,生物工程组织变得越来越复杂。在未来几年内,构建能够准确模拟人类组织组成、结构和功能特性的人工构建体的能力,将极大地影响医疗保健行业的治疗和诊断方面。在这方面,由于心肌自身再生能力极其有限,以及全球心血管疾病死亡率极高,生物工程心脏组织尤其重要。随着新型微生理系统从实验室走向临床,它们在高通量药物筛选、个性化诊断、疾病建模和靶向治疗验证中的应用将带来心血管疾病临床管理的范式转变。在这里,我们将回顾下一代诊断和治疗验证的实验体外平台的最新进展。我们将描述智能生物材料、生物制造技术和干细胞工程的最新进展,旨在在组织和器官水平上再现心血管功能。此外,还将讨论整合和多学科方法来构建具有前所未有人类和临床相关性的仿生心血管结构。我们将评论这些平台在高通量药物筛选、体外疾病建模和治疗验证中的应用。最后,将提供关于这些仿生平台如何帮助向以患者为中心的诊断以及个性化靶向治疗的发展过渡的未来展望。

相似文献

1
Biomimetic cardiovascular platforms for in vitro disease modeling and therapeutic validation.
Biomaterials. 2019 Apr;198:78-94. doi: 10.1016/j.biomaterials.2018.08.010. Epub 2018 Aug 4.
2
Cardiovascular disease models: A game changing paradigm in drug discovery and screening.
Biomaterials. 2019 Apr;198:3-26. doi: 10.1016/j.biomaterials.2018.09.036. Epub 2018 Oct 1.
3
Tissue models: a living system on a chip.
Nature. 2011 Mar 31;471(7340):661-5. doi: 10.1038/471661a.
4
Bioengineering heart tissue for in vitro testing.
Curr Opin Biotechnol. 2013 Oct;24(5):926-32. doi: 10.1016/j.copbio.2013.07.002. Epub 2013 Aug 6.
6
Next generation human skin constructs as advanced tools for drug development.
Exp Biol Med (Maywood). 2017 Nov;242(17):1657-1668. doi: 10.1177/1535370217712690. Epub 2017 Jun 7.
7
Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies.
Adv Healthc Mater. 2016 Oct;5(19):2459-2480. doi: 10.1002/adhm.201600439. Epub 2016 Aug 22.
8
Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery.
Int J Mol Sci. 2021 Jan 26;22(3):1203. doi: 10.3390/ijms22031203.
9
Heart-on-Chip for Combined Cellular Dynamics Measurements and Computational Modeling Towards Clinical Applications.
Ann Biomed Eng. 2022 Feb;50(2):111-137. doi: 10.1007/s10439-022-02902-7. Epub 2022 Jan 17.
10
Bioengineered 3D Models to Recapitulate Tissue Fibrosis.
Trends Biotechnol. 2020 Jun;38(6):623-636. doi: 10.1016/j.tibtech.2019.12.010. Epub 2020 Jan 15.

引用本文的文献

1
Ultrasensitive Electrochemical Immunosensor for Multiplex Sandwich Bioassaying Based on the Functional Antibodies.
ACS Omega. 2024 Mar 12;9(12):14249-14254. doi: 10.1021/acsomega.3c09942. eCollection 2024 Mar 26.
2
High throughput screening system for engineered cardiac tissues.
Front Bioeng Biotechnol. 2023 May 11;11:1177688. doi: 10.3389/fbioe.2023.1177688. eCollection 2023.
3
Dynamic and static biomechanical traits of cardiac fibrosis.
Front Bioeng Biotechnol. 2022 Oct 31;10:1042030. doi: 10.3389/fbioe.2022.1042030. eCollection 2022.
4
Rebuilding the Vascular Network: and Approaches.
Front Cell Dev Biol. 2021 Apr 21;9:639299. doi: 10.3389/fcell.2021.639299. eCollection 2021.
6
Designing Biomaterial Platforms for Cardiac Tissue and Disease Modeling.
Adv Nanobiomed Res. 2021 Jan;1(1). doi: 10.1002/anbr.202000022. Epub 2020 Oct 16.
7
hiPSC-Derived Cardiac Tissue for Disease Modeling and Drug Discovery.
Int J Mol Sci. 2020 Nov 24;21(23):8893. doi: 10.3390/ijms21238893.
8
Extracellular Vesicles in Cardiac Regeneration: Potential Applications for Tissues-on-a-Chip.
Trends Biotechnol. 2021 Aug;39(8):755-773. doi: 10.1016/j.tibtech.2020.08.005. Epub 2020 Sep 19.

本文引用的文献

1
Hydrogels with Dual Gradients of Mechanical and Biochemical Cues for Deciphering Cell-Niche Interactions.
ACS Biomater Sci Eng. 2016 May 9;2(5):845-852. doi: 10.1021/acsbiomaterials.6b00074. Epub 2016 Apr 11.
2
Liquid-like Solids Support Cells in 3D.
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1787-1795. doi: 10.1021/acsbiomaterials.6b00218. Epub 2016 Jun 20.
3
Novel biocompatible electrospun gelatin fiber mats with antibiotic drug delivery properties.
J Mater Chem B. 2016 Feb 14;4(6):1134-1141. doi: 10.1039/c5tb01897h. Epub 2016 Jan 13.
5
6
Advanced Material Strategies for Next-Generation Additive Manufacturing.
Materials (Basel). 2018 Jan 22;11(1):166. doi: 10.3390/ma11010166.
7
Engineering 3D Hydrogels for Personalized In Vitro Human Tissue Models.
Adv Healthc Mater. 2018 Feb;7(4). doi: 10.1002/adhm.201701165. Epub 2018 Jan 18.
8
Exploiting Advanced Hydrogel Technologies to Address Key Challenges in Regenerative Medicine.
Adv Healthc Mater. 2018 Apr;7(8):e1700939. doi: 10.1002/adhm.201700939. Epub 2018 Jan 9.
9
Tissue-Engineered Vascular Graft of Small Diameter Based on Electrospun Polylactide Microfibers.
Int J Biomater. 2017;2017:9034186. doi: 10.1155/2017/9034186. Epub 2017 Nov 8.
10
Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics.
Biomaterials. 2018 Feb;156:88-106. doi: 10.1016/j.biomaterials.2017.11.030. Epub 2017 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验