Suppr超能文献

基于空间回归模型的面状单元数据向高分辨率网格的离散化及其在疫苗接种覆盖度制图中的应用。

A spatial regression model for the disaggregation of areal unit based data to high-resolution grids with application to vaccination coverage mapping.

机构信息

WorldPop, Department of Geography and Environment, University of Southampton, Southampton, UK.

Southampton Statistical Sciences Research Institute, University of Southampton, Southampton, UK.

出版信息

Stat Methods Med Res. 2019 Oct-Nov;28(10-11):3226-3241. doi: 10.1177/0962280218797362. Epub 2018 Sep 19.

Abstract

The growing demand for spatially detailed data to advance the Sustainable Development Goals agenda of 'leaving no one behind' has resulted in a shift in focus from aggregate national and province-based metrics to small areas and high-resolution grids in the health and development arena. Vaccination coverage is customarily measured through aggregate-level statistics, which mask fine-scale heterogeneities and 'coldspots' of low coverage. This paper develops a methodology for high-resolution mapping of vaccination coverage using areal data in settings where point-referenced survey data are inaccessible. The proposed methodology is a binomial spatial regression model with a logit link and a combination of covariate data and random effects modelling two levels of spatial autocorrelation in the linear predictor. The principal aspect of the model is the melding of the misaligned areal data and the prediction grid points using the regression component and each of the conditional autoregressive and the Gaussian spatial process random effects. The Bayesian model is fitted using the INLA-SPDE approach. We demonstrate the predictive ability of the model using simulated data sets. The results obtained indicate a good predictive performance by the model, with correlations of between 0.66 and 0.98 obtained at the grid level between true and predicted values. The methodology is applied to predicting the coverage of measles and diphtheria-tetanus-pertussis vaccinations at 5 × 5 km in Afghanistan and Pakistan using subnational Demographic and Health Surveys data. The predicted maps are used to highlight vaccination coldspots and assess progress towards coverage targets to facilitate the implementation of more geographically precise interventions. The proposed methodology can be readily applied to wider disaggregation problems in related contexts, including mapping other health and development indicators.

摘要

为了推进“不让任何人掉队”的可持续发展目标议程,对空间详细数据的需求不断增长,这导致人们的关注点从基于国家和省份的汇总指标转向卫生和发展领域的小区域和高分辨率网格。疫苗接种覆盖率通常通过汇总统计数据来衡量,但这些数据掩盖了细微的异质性和低覆盖率的“冷点”。本文开发了一种使用面状数据进行高分辨率疫苗接种覆盖率制图的方法,适用于无法获得点状参考调查数据的情况。所提出的方法是一个二项空间回归模型,带有对数链接,以及协变量数据和随机效应的组合,对线性预测器中的两个层次的空间自相关进行建模。该模型的主要方面是通过回归分量以及条件自回归和高斯空间过程随机效应将错位的面状数据和预测网格点融合在一起。贝叶斯模型使用 INLA-SPDE 方法进行拟合。我们使用模拟数据集演示了模型的预测能力。结果表明,该模型具有良好的预测性能,在网格级别上,真实值和预测值之间的相关性在 0.66 到 0.98 之间。该方法应用于使用次国家级人口与健康调查数据在阿富汗和巴基斯坦的 5×5km 网格上预测麻疹和风疹-白喉-破伤风疫苗接种覆盖率。预测图用于突出疫苗接种冷点,并评估实现覆盖目标的进展情况,以促进实施更具地理精度的干预措施。该方法可以很容易地应用于相关背景下更广泛的细分问题,包括绘制其他卫生和发展指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/126c/6745613/8e8a6be7b441/10.1177_0962280218797362-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验