用于公共子空间分析的独立向量分析:应用于多受试者功能磁共振成像数据可得出有意义的精神分裂症亚组。
Independent vector analysis for common subspace analysis: Application to multi-subject fMRI data yields meaningful subgroups of schizophrenia.
作者信息
Long Qunfang, Bhinge Suchita, Calhoun Vince D, Adali Tülay
机构信息
Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA.
Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA.
出版信息
Neuroimage. 2020 Aug 1;216:116872. doi: 10.1016/j.neuroimage.2020.116872. Epub 2020 Apr 28.
The extraction of common and distinct biomedical signatures among different populations allows for a more detailed study of the group-specific as well as distinct information of different populations. A number of subspace analysis algorithms have been developed and successfully applied to data fusion, however they are limited to joint analysis of only a couple of datasets. Since subspace analysis is very promising for analysis of multi-subject medical imaging data as well, we focus on this problem and propose a new method based on independent vector analysis (IVA) for common subspace extraction (IVA-CS) for multi-subject data analysis. IVA-CS leverages the strength of IVA in identification of a complete subspace structure across multiple datasets along with an efficient solution that uses only second-order statistics. We propose a subset analysis approach within IVA-CS to mitigate issues in estimation in IVA due to high dimensionality, both in terms of components estimated and the number of datasets. We introduce a scheme to determine a desirable size for the subset that is high enough to exploit the dependence across datasets and is not affected by the high dimensionality issue. We demonstrate the success of IVA-CS in extracting complex subset structures and apply the method to analysis of functional magnetic resonance imaging data from 179 subjects and show that it successfully identifies shared and complementary brain patterns from patients with schizophrenia (SZ) and healthy controls group. Two components with linked resting-state networks are identified to be unique to the SZ group providing evidence of functional dysconnectivity. IVA-CS also identifies subgroups of SZs that show significant differences in terms of their brain networks and clinical symptoms.
在不同人群中提取共同和独特的生物医学特征,有助于更详细地研究特定群体的信息以及不同人群的独特信息。已经开发了许多子空间分析算法,并成功应用于数据融合,然而它们仅限于对少数几个数据集进行联合分析。由于子空间分析对于多主体医学成像数据的分析也非常有前景,我们专注于这个问题,并提出一种基于独立向量分析(IVA)的新方法,用于多主体数据分析的公共子空间提取(IVA-CS)。IVA-CS利用IVA在识别多个数据集的完整子空间结构方面的优势,以及仅使用二阶统计量的有效解决方案。我们在IVA-CS中提出一种子集分析方法,以减轻IVA中由于高维度导致的估计问题,这在估计的分量数量和数据集数量方面都存在。我们引入一种方案来确定子集的理想大小,该大小要足够高以利用数据集之间的依赖性,并且不受高维度问题的影响。我们证明了IVA-CS在提取复杂子集结构方面的成功,并将该方法应用于对179名受试者的功能磁共振成像数据的分析,结果表明它成功地识别了精神分裂症(SZ)患者和健康对照组之间共享和互补的脑模式。确定了两个与静息态网络相连的成分是SZ组独有的,这为功能失调提供了证据。IVA-CS还识别出SZ患者的亚组,这些亚组在脑网络和临床症状方面存在显著差异。