Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
Sci Rep. 2018 Sep 26;8(1):14388. doi: 10.1038/s41598-018-32794-4.
Bone regeneration, following fracture, relies on autologous and allogenic bone grafts. However, majority of fracture population consists of older individuals with poor quality bone associated with loss and/or modification of matrix proteins critical for bone formation and mineralization. Allografts suffer from same limitations and carry the risk of delayed healing, infection, immune rejection and eventual fracture. In this work, we apply a synergistic biomimetic strategy to develop matrices that rapidly form bone tissue - a critical aspect of fracture healing of weight bearing bones. Collagen matrices, enhanced with two selected key matrix proteins, osteocalcin (OC) and/or osteopontin (OPN), increased the rate and quantity of synthesized bone matrix by increasing mesenchymal stem/stromal cell (MSC) proliferation, accelerating osteogenic differentiation, enhancing angiogenesis and showing a sustained bone formation response from MSC obtained from a variety of human tissue sources (marrow, fat and umbilical cord). In vivo assessment of OC/OPN mineralized scaffolds in a critical sized-defect rabbit long-bone model did not reveal any foreign body reaction while bone tissue was being formed. We demonstrate a new biomimetic strategy to rapidly form mineralized bone tissue and secure a sustained bone formation response by MSC from multiple sources, thus facilitating faster patient recovery and treatment of non-union fractures in aging and diseased population. Acellular biomimetic matrices elicit bone regeneration response from MSC, obtained from multiple tissue sources, and can be used in variety of scaffolds and made widely available.
骨折后的骨再生依赖于自体和同种异体骨移植物。然而,大多数骨折患者为年龄较大的人群,其骨质量较差,与骨形成和矿化所必需的基质蛋白的丢失和/或修饰有关。同种异体移植物也存在同样的局限性,并存在愈合延迟、感染、免疫排斥和最终骨折的风险。在这项工作中,我们应用协同仿生策略来开发能够快速形成骨组织的基质,这是承重骨骨折愈合的关键方面。与两种选定的关键基质蛋白(骨钙素(OC)和/或骨桥蛋白(OPN))增强的胶原基质通过增加间充质干细胞/基质细胞(MSC)增殖、加速成骨分化、增强血管生成并从各种人类组织来源(骨髓、脂肪和脐带)获得的 MSC 表现出持续的骨形成反应,从而增加了合成的骨基质的速率和数量。在临界尺寸缺陷兔长骨模型中对 OC/OPN 矿化支架的体内评估表明,在形成骨组织的同时,没有任何异物反应。我们展示了一种新的仿生策略,可以快速形成矿化的骨组织,并通过来自多个来源的 MSC 获得持续的骨形成反应,从而促进更快的患者康复和治疗衰老和患病人群中的骨不连。去细胞仿生基质可从多种组织来源的 MSC 中引发骨再生反应,并可用于多种支架中,且应用广泛。