Suppr超能文献

使用深度置信网络模型来刻画精神分裂症患者大脑形态计量学的差异。

Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia.

机构信息

Center of Mathematics, Computation, and Cognition. Universidade Federal do ABC, Santo André, Brazil.

Department of Psychiatry. Universidade Federal de São Paulo, São Paulo, Brazil.

出版信息

Sci Rep. 2016 Dec 12;6:38897. doi: 10.1038/srep38897.

Abstract

Neuroimaging-based models contribute to increasing our understanding of schizophrenia pathophysiology and can reveal the underlying characteristics of this and other clinical conditions. However, the considerable variability in reported neuroimaging results mirrors the heterogeneity of the disorder. Machine learning methods capable of representing invariant features could circumvent this problem. In this structural MRI study, we trained a deep learning model known as deep belief network (DBN) to extract features from brain morphometry data and investigated its performance in discriminating between healthy controls (N = 83) and patients with schizophrenia (N = 143). We further analysed performance in classifying patients with a first-episode psychosis (N = 32). The DBN highlighted differences between classes, especially in the frontal, temporal, parietal, and insular cortices, and in some subcortical regions, including the corpus callosum, putamen, and cerebellum. The DBN was slightly more accurate as a classifier (accuracy = 73.6%) than the support vector machine (accuracy = 68.1%). Finally, the error rate of the DBN in classifying first-episode patients was 56.3%, indicating that the representations learned from patients with schizophrenia and healthy controls were not suitable to define these patients. Our data suggest that deep learning could improve our understanding of psychiatric disorders such as schizophrenia by improving neuromorphometric analyses.

摘要

基于神经影像学的模型有助于增加我们对精神分裂症病理生理学的理解,并能揭示这种疾病和其他临床病症的潜在特征。然而,报告的神经影像学结果存在相当大的差异,反映了该疾病的异质性。能够表示不变特征的机器学习方法可以解决这个问题。在这项结构磁共振成像研究中,我们训练了一种称为深度置信网络(DBN)的深度学习模型,从脑形态计量学数据中提取特征,并研究了其在区分健康对照组(N=83)和精神分裂症患者(N=143)中的性能。我们进一步分析了在分类首次发作精神病患者(N=32)中的性能。DBN 突出了不同类别之间的差异,特别是在额叶、颞叶、顶叶和脑岛皮层,以及一些皮质下区域,包括胼胝体、壳核和小脑。与支持向量机(准确性=68.1%)相比,DBN 作为分类器的准确性略高(准确性=73.6%)。最后,DBN 对首次发作患者进行分类的错误率为 56.3%,表明从精神分裂症患者和健康对照组中学习到的表示不适用于定义这些患者。我们的数据表明,通过改进神经形态计量学分析,深度学习可以提高我们对精神分裂症等精神疾病的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73a8/5151017/82fb2bcaff08/srep38897-f1.jpg

相似文献

3
Neuroanatomical pattern classification in a population-based sample of first-episode schizophrenia.
Prog Neuropsychopharmacol Biol Psychiatry. 2013 Jun 3;43:116-25. doi: 10.1016/j.pnpbp.2012.12.005. Epub 2012 Dec 20.
4
Brain structure in people at ultra-high risk of psychosis, patients with first-episode schizophrenia, and healthy controls: a VBM study.
Schizophr Res. 2015 Feb;161(2-3):169-76. doi: 10.1016/j.schres.2014.10.041. Epub 2014 Dec 12.
5
Investigating brain structural patterns in first episode psychosis and schizophrenia using MRI and a machine learning approach.
Psychiatry Res Neuroimaging. 2018 May 30;275:14-20. doi: 10.1016/j.pscychresns.2018.03.003. Epub 2018 Mar 6.
8
Multi-Site Diagnostic Classification of Schizophrenia Using Discriminant Deep Learning with Functional Connectivity MRI.
EBioMedicine. 2018 Apr;30:74-85. doi: 10.1016/j.ebiom.2018.03.017. Epub 2018 Mar 23.
9
A Deep Neural Network-Based Pain Classifier Using a Photoplethysmography Signal.
Sensors (Basel). 2019 Jan 18;19(2):384. doi: 10.3390/s19020384.

引用本文的文献

3
Improved patient identification by incorporating symptom severity in deep learning using neuroanatomic images in first episode schizophrenia.
Neuropsychopharmacology. 2025 Feb;50(3):531-539. doi: 10.1038/s41386-024-02021-y. Epub 2024 Nov 6.
4
Schizophrenia and magnetic resonance imaging research: A scientometric analysis during 2014 to 2023.
Medicine (Baltimore). 2024 Oct 25;103(43):e39710. doi: 10.1097/MD.0000000000039710.
5
7
Deep Learning-based Brain Age Prediction in Patients With Schizophrenia Spectrum Disorders.
Schizophr Bull. 2024 Jul 27;50(4):804-814. doi: 10.1093/schbul/sbad167.
9
A meta-analysis and systematic review of single vs. multimodal neuroimaging techniques in the classification of psychosis.
Mol Psychiatry. 2023 Aug;28(8):3278-3292. doi: 10.1038/s41380-023-02195-9. Epub 2023 Aug 10.
10
Contrast Agents of Magnetic Resonance Imaging and Future Perspective.
Nanomaterials (Basel). 2023 Jul 4;13(13):2003. doi: 10.3390/nano13132003.

本文引用的文献

1
Brain tumor segmentation with Deep Neural Networks.
Med Image Anal. 2017 Jan;35:18-31. doi: 10.1016/j.media.2016.05.004. Epub 2016 May 19.
3
State-space model with deep learning for functional dynamics estimation in resting-state fMRI.
Neuroimage. 2016 Apr 1;129:292-307. doi: 10.1016/j.neuroimage.2016.01.005. Epub 2016 Jan 14.
4
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
6
Modeling the variability in brain morphology and lesion distribution in multiple sclerosis by deep learning.
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):462-9. doi: 10.1007/978-3-319-10470-6_58.
7
Deep learning for neuroimaging: a validation study.
Front Neurosci. 2014 Aug 20;8:229. doi: 10.3389/fnins.2014.00229. eCollection 2014.
8
Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis.
Neuroimage. 2014 Nov 1;101:569-82. doi: 10.1016/j.neuroimage.2014.06.077. Epub 2014 Jul 18.
9
Mitosis detection in breast cancer histology images with deep neural networks.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):411-8. doi: 10.1007/978-3-642-40763-5_51.
10
The ADHD-200 Consortium: A Model to Advance the Translational Potential of Neuroimaging in Clinical Neuroscience.
Front Syst Neurosci. 2012 Sep 5;6:62. doi: 10.3389/fnsys.2012.00062. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验