Suppr超能文献

发现并阐明 Aspernidgulenes 的生物合成:通过串联启动子替换从 Aspergillus nidulans 中得到的新型多烯

Discovery and Elucidation of the Biosynthesis of Aspernidgulenes: Novel Polyenes from Aspergillus Nidulans by Using Serial Promoter Replacement.

机构信息

Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA.

Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan.

出版信息

Chembiochem. 2019 Feb 1;20(3):329-334. doi: 10.1002/cbic.201800486. Epub 2018 Dec 6.

Abstract

Through serial promoter exchanges, we isolated several novel polyenes, the aspernidgulenes, from Aspergillus nidulans and uncovered their succinct biosynthetic pathway involving only four enzymes. An enoyl reductase (ER)-less highly reducing polyketide synthase (HR-PKS) putatively produces a 5,6-dihydro-α-pyrone polyene, which undergoes bisepoxidation, epoxide ring opening, cyclization, and hydrolytic cleavage by three tailoring enzymes to generate aspernidgulene A1 and A2. Our findings demonstrate the prowess of fungal-tailoring enzymes to transform a polyketide scaffold concisely and efficiently into complex structures. Moreover, comparison with citreoviridin and aurovertin biosynthesis suggests that methylation of the α-pyrone hydroxy group by methyltransferase (CtvB or AurB) is the branching point at which the biosynthesis of these two classes of compounds diverge. Therefore, scanning for the presence or absence of the gatekeeping α-pyrone methyltransferase gene in homologous clusters might be a potential way to classify the product bioinformatically as belonging to methylated α-pyrone polyenes or polyenes containing rings derived from the cyclization of the unmethylated 5,6-dihydro-α-pyrone, such as 2,3-dimethyl-γ-lactone and oxabicyclo[2.2.1]heptane.

摘要

通过连续启动子交换,我们从构巢曲霉中分离到几种新型多烯化合物aspernidgulenes,并揭示了它们仅涉及四个酶的简洁生物合成途径。烯酰还原酶(ER)缺失的高度还原聚酮合酶(HR-PKS)推测产生 5,6-二氢-α-吡喃酮多烯,其经历双环氧化、环氧化物开环、环化和由三种修饰酶进行水解裂解,生成 aspernidgulene A1 和 A2。我们的发现表明真菌修饰酶能够简洁有效地将聚酮支架转化为复杂结构。此外,与 citreoviridin 和 aurovertin 生物合成的比较表明,α-吡喃酮羟基的甲基化由甲基转移酶(CtvB 或 AurB)进行,这是这两类化合物生物合成分歧的分支点。因此,扫描同源簇中存在或不存在关键的α-吡喃酮甲基转移酶基因可能是一种潜在的方法,可以根据产物的信息分类为甲基化的α-吡喃酮多烯或包含未甲基化 5,6-二氢-α-吡喃酮环化衍生的环的多烯,如 2,3-二甲基-γ-内酯和氧杂双环[2.2.1]庚烷。

相似文献

3

引用本文的文献

本文引用的文献

2
Induced Chemical Defense of a Mushroom by a Double-Bond-Shifting Polyene Synthase.双烯键移位多烯合酶诱导蘑菇产生化学防御。
Angew Chem Int Ed Engl. 2017 May 15;56(21):5937-5941. doi: 10.1002/anie.201700767. Epub 2017 Apr 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验