Suppr超能文献

基于单手指神经基础信息的多指运动神经解码器。

Single-Finger Neural Basis Information-Based Neural Decoder for Multi-Finger Movements.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2018 Dec;26(12):2240-2248. doi: 10.1109/TNSRE.2018.2875731. Epub 2018 Oct 12.

Abstract

In this paper, we investigate the relationship between single and multi-finger movements. By exploiting the neural correlation between the temporal firing patterns between movements, we show that the Pearson's correlation coefficient for the physically related movement pairs are greater than those of others; the firing rates of the neurons that are tuned to a single-finger movements also increases when the corresponding multi-finger movements are instructed. We also use a hierarchical cluster analysis to verify not only the relationship between the single and multi-finger movements, but also the relationship between the flexion and extension movements. Furthermore, we propose a novel decoding method of modeling neural firing patterns while omitting the training process of the multi-finger movements. For the decoding, the Skellam and Gaussian probability distributions are used as mathematical models. The probabilistic distribution model of the multi-finger movements was estimated using the neural activity that was acquired during single-finger movements. As a result, the proposed neural decoding accuracy comparable with that of the supervised neural decoding accuracy when all of the neurons were used for the multi-finger movements. These results suggest that only the neural activities of single-finger movements can be exploited for the control of dexterous multi-finger neuroprosthetics.

摘要

在本文中,我们研究了单指和多指运动之间的关系。通过利用运动之间时间发放模式的神经相关性,我们表明,物理相关运动对的 Pearson 相关系数大于其他运动对的 Pearson 相关系数;当指令执行相应的多指运动时,对单指运动调谐的神经元的发放率也会增加。我们还使用层次聚类分析不仅验证了单指和多指运动之间的关系,还验证了弯曲和伸展运动之间的关系。此外,我们提出了一种新的解码方法,该方法在省略多指运动训练过程的情况下对神经发放模式进行建模。对于解码,使用 Skellam 和高斯概率分布作为数学模型。使用在单指运动过程中获得的神经活动来估计多指运动的概率分布模型。结果表明,当使用所有神经元进行多指运动时,所提出的神经解码精度与有监督的神经解码精度相当。这些结果表明,只有单指运动的神经活动可用于灵巧的多指神经假肢控制。

相似文献

1
Single-Finger Neural Basis Information-Based Neural Decoder for Multi-Finger Movements.基于单手指神经基础信息的多指运动神经解码器。
IEEE Trans Neural Syst Rehabil Eng. 2018 Dec;26(12):2240-2248. doi: 10.1109/TNSRE.2018.2875731. Epub 2018 Oct 12.
5
Asynchronous decoding of dexterous finger movements using M1 neurons.利用M1神经元对灵巧手指运动进行异步解码。
IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):3-14. doi: 10.1109/TNSRE.2007.916289.
6
Decoding M1 neurons during multiple finger movements.在多个手指运动过程中对M1神经元进行解码。
J Neurophysiol. 2007 Jul;98(1):327-33. doi: 10.1152/jn.00760.2006. Epub 2007 Apr 11.
8

本文引用的文献

3
Coding of movements in the motor cortex.运动皮层中的运动编码。
Curr Opin Neurobiol. 2015 Aug;33:34-9. doi: 10.1016/j.conb.2015.01.012. Epub 2015 Jan 31.
6
Adaptive offset correction for intracortical brain-computer interfaces.皮层内脑机接口的自适应偏移校正。
IEEE Trans Neural Syst Rehabil Eng. 2014 Mar;22(2):239-48. doi: 10.1109/TNSRE.2013.2287768.
10
High-performance neuroprosthetic control by an individual with tetraplegia.高位截瘫患者的高性能神经假体控制。
Lancet. 2013 Feb 16;381(9866):557-64. doi: 10.1016/S0140-6736(12)61816-9. Epub 2012 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验