Center for Molecular Design and Biomimetics at the Biodesign Institute and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States.
J Am Chem Soc. 2018 Nov 7;140(44):14670-14676. doi: 10.1021/jacs.8b07180. Epub 2018 Oct 29.
DNA tile-based assembly provides a promising bottom-up avenue to create designer two-dimensional (2D) and three-dimensional (3D) crystalline structures that may host guest molecules or nanoparticles to achieve novel functionalities. Herein, we introduce a new kind of DNA tiles (named layered-crossover tiles) that each consists of two or four pairs of layered crossovers to bridge DNA helices in two neighboring layers with precisely predetermined relative orientations. By providing proper matching rules for the sticky ends at the terminals, these layered-crossover tiles are able to assemble into 2D periodic lattices with precisely controlled angles ranging from 20° to 80°. The layered-crossover tile can be slightly modified and used to successfully assemble 3D lattice with dimensions of several hundred micrometers with tunable angles as well. These layered-crossover tiles significantly expand the toolbox of DNA nanotechnology to construct materials through bottom-up approaches.
基于 DNA 瓦片的组装为创建二维 (2D) 和三维 (3D) 晶体结构提供了一种很有前途的自下而上的途径,这些结构可以容纳客体分子或纳米颗粒,以实现新的功能。在这里,我们引入了一种新型的 DNA 瓦片(命名为层交叠瓦片),每个瓦片由两对或四对层交叠组成,以精确预定的相对取向连接两个相邻层中的 DNA 螺旋。通过为末端的粘性末端提供适当的匹配规则,这些层交叠瓦片能够组装成具有精确控制角度(从 20°到 80°)的二维周期性晶格。经过稍微修改,层交叠瓦片也可以成功组装成具有可调角度的几毫米到几百微米的三维晶格。这些层交叠瓦片极大地扩展了 DNA 纳米技术的工具包,通过自下而上的方法构建材料。