Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
Nat Commun. 2018 Oct 19;9(1):4366. doi: 10.1038/s41467-018-06712-1.
Several peptides in clinical use are derived from non-ribosomal peptide synthetases (NRPS). In these systems multiple NRPS subunits interact with each other in a specific linear order mediated by specific docking domains (DDs), whose structures are not known yet, to synthesize well-defined peptide products. In contrast to classical NRPSs, single-module NRPS subunits responsible for the generation of rhabdopeptide/xenortide-like peptides (RXPs) can act in different order depending on subunit stoichiometry thereby producing peptide libraries. To define the basis for their unusual interaction patterns, we determine the structures of all N-terminal DDs (DDs) as well as of an DD-DD complex and characterize all putative DD interactions thermodynamically for such a system. Key amino acid residues for DD interactions are identified that upon their exchange change the DD affinity and result in predictable changes in peptide production. Recognition rules for DD interactions are identified that also operate in other megasynthase complexes.
临床上使用的几种肽是由非核糖体肽合成酶(NRPS)衍生而来的。在这些系统中,多个 NRPS 亚基通过特定的 docking 结构域(DD)以特定的线性顺序相互作用,这些结构域的结构尚未确定,从而合成定义明确的肽产物。与经典的 NRPS 不同,负责生成麻疯肽/外生肽样肽(RXP)的单模块 NRPS 亚基可以根据亚基化学计量比以不同的顺序起作用,从而产生肽文库。为了确定它们不寻常的相互作用模式的基础,我们确定了所有 N 端 DD(DD)以及 DD-DD 复合物的结构,并对该系统的所有假定 DD 相互作用进行了热力学特性分析。确定了用于 DD 相互作用的关键氨基酸残基,这些残基的交换会改变 DD 的亲和力,并导致肽产量的可预测变化。确定了用于 DD 相互作用的识别规则,这些规则也适用于其他的 megasynthase 复合物。