Liu Guowei, Bollier Daniel, Gübeli Christian, Peter Noemi, Arnold Peter, Egli Marcel, Borghi Lorenzo
1Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
Institute of Medical Engineering, HSLU Lucerne, Obermattweg 9, 6052 Hergiswil, Switzerland.
NPJ Microgravity. 2018 Oct 17;4:20. doi: 10.1038/s41526-018-0054-z. eCollection 2018.
Human-assisted space exploration will require efficient methods of food production. Large-scale farming in presence of an Earth-like atmosphere in space faces two main challenges: plant yield in microgravity and plant nutrition in extraterrestrial soils, which are likely low in nutrients compared to terrestrial farm lands. We propose a plant-fungal symbiosis (i.e. mycorrhiza) as an efficient tool to increase plant biomass production in extraterrestrial environments. We tested the mycorrhization of Solanaceae on the model plant using the arbuscular mycorrhizal fungus under simulated microgravity () conditions obtained through a 3-D random positioning machine. Our results show that negatively affects mycorrhization and plant phosphate uptake by inhibiting hyphal elongation and secondary branching. However, in low nutrient conditions, the mycorrhiza can still support plant biomass production in when colonized plants have increased SL root exudation. Alternatively, in high nutrient conditions boosts tissue-specific cell division and cell expansion and overall plant size in , which has been reported for other plants species. Finally, we show that the SL mimic molecule can still induce hyphal branching in vitro under simulated microgravity. Based on these results, we propose that in nutrient limited conditions strigolactone root exudation can challenge the negative microgravity effects on mycorrhization and therefore might play an important role in increasing the efficiency of future space farming.
人类辅助的太空探索将需要高效的粮食生产方法。在太空类似地球的大气环境中进行大规模种植面临两个主要挑战:微重力环境下的植物产量以及外星土壤中的植物营养,与陆地农田相比,外星土壤的养分可能较低。我们提出植物 - 真菌共生(即菌根)作为一种提高外星环境中植物生物量产量的有效工具。我们使用丛枝菌根真菌,在通过三维随机定位机获得的模拟微重力()条件下,在模式植物上测试了茄科植物的菌根形成情况。我们的结果表明,通过抑制菌丝伸长和二级分支,对菌根形成和植物磷吸收有负面影响。然而,在低养分条件下,当定殖植物的独脚金内酯根分泌物增加时,菌根仍能支持植物生物量的产生。另外,在高养分条件下,会促进特定组织的细胞分裂和细胞扩展以及植物的整体大小,这在其他植物物种中也有报道。最后,我们表明独脚金内酯模拟分子在模拟微重力下仍能在体外诱导菌丝分支。基于这些结果,我们提出在养分有限的条件下,独脚金内酯根分泌物可以挑战微重力对菌根形成的负面影响,因此可能在提高未来太空种植效率方面发挥重要作用。