Suppr超能文献

大肠杆菌K-12的β-葡萄糖苷(bgl)操纵子:核苷酸序列、基因组织以及与两个枯草芽孢杆菌基因调控元件可能的进化关系。

Beta-glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes.

作者信息

Schnetz K, Toloczyki C, Rak B

出版信息

J Bacteriol. 1987 Jun;169(6):2579-90. doi: 10.1128/jb.169.6.2579-2590.1987.

Abstract

Wild-type Escherichia coli cells are unable to grow on beta-glucosides. Spontaneous mutants arise, however, which are able to utilize certain aromatic beta-glucosides such as salicin or arbutin as carbon sources, revealing the presence of a cryptic operon called bgl. Mutations activating the operon map within (or close to) the promoter region of the operon and are due to the transposition of an IS1 or IS5 insertion element into this region. This operon was reported to consist of three genes coding for a phospho-beta-glucosidase, a specific transport protein (enzyme IIBgl), and a positively regulating protein. We have defined the extent and location of three structural genes, bglC, bglS, and bglB, and have determined their DNA sequence. The amino acid sequences deduced from the open reading frames together with deletion and subcloning analyses suggest that the first gene, bglC, codes for the regulatory protein, the second, bglS, codes for the transport protein, and the third, bglB, for phospho-beta-glucosidase. A fourth gene may exist which codes for a product of unknown function. We discuss structural features of the DNA sequence which may bear on the regulation of the operon. Homologies to sequences preceding the gene for an excreted levansucrase of Bacillus subtilis, which are known to be involved in the regulation of this gene, and to sequences preceding the gene for an excreted beta-endoglucanase of B. subtilis, for which data pertaining to regulation are not yet available, suggest a close evolutionary relationship among the regulatory components of all three systems.

摘要

野生型大肠杆菌细胞无法在β-葡萄糖苷上生长。然而,会出现自发突变体,它们能够利用某些芳香族β-葡萄糖苷(如柳醇或熊果苷)作为碳源,这揭示了一个名为bgl的隐蔽操纵子的存在。激活该操纵子的突变位于操纵子的启动子区域内(或附近),是由于IS1或IS5插入元件转座到该区域所致。据报道,这个操纵子由三个基因组成,分别编码磷酸-β-葡萄糖苷酶、一种特异性转运蛋白(酶IIBgl)和一种正调控蛋白。我们已经确定了三个结构基因bglC、bglS和bglB的范围和位置,并测定了它们的DNA序列。从开放阅读框推导的氨基酸序列以及缺失和亚克隆分析表明,第一个基因bglC编码调控蛋白,第二个基因bglS编码转运蛋白,第三个基因bglB编码磷酸-β-葡萄糖苷酶。可能存在第四个基因,其编码功能未知的产物。我们讨论了可能与操纵子调控有关的DNA序列的结构特征。与枯草芽孢杆菌分泌型果聚糖蔗糖酶基因之前的序列具有同源性,已知该序列参与该基因的调控;与枯草芽孢杆菌分泌型β-内切葡聚糖酶基因之前的序列具有同源性,目前关于该基因调控的数据尚不可用,这表明这三个系统的调控成分之间存在密切的进化关系。

相似文献

2
Positive and negative regulation of the bgl operon in Escherichia coli.
J Bacteriol. 1987 Jun;169(6):2570-8. doi: 10.1128/jb.169.6.2570-2578.1987.
4
Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis.
J Bacteriol. 1995 Oct;177(19):5590-7. doi: 10.1128/jb.177.19.5590-5597.1995.
5
Regulation of the beta-glucoside system in Escherchia coli K-12.
J Bacteriol. 1974 Nov;120(2):638-50. doi: 10.1128/jb.120.2.638-650.1974.
7
Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12.
Genetics. 1990 Mar;124(3):455-71. doi: 10.1093/genetics/124.3.455.

引用本文的文献

1
Bacterial Tolerance to 1-Butanol and 2-Butanol: Quantitative Assessment and Transcriptomic Response.
Int J Mol Sci. 2024 Dec 12;25(24):13336. doi: 10.3390/ijms252413336.
4
Mechanism for Utilization of the -Derived Metabolite Salicin by a - Co-Culture.
Metabolites. 2023 Jan 17;13(2):140. doi: 10.3390/metabo13020140.
5
Histone-like nucleoid structuring (H-NS) protein silences the beta-glucoside () utilization operon in by forming a DNA loop.
Comput Struct Biotechnol J. 2022 Nov 12;20:6287-6301. doi: 10.1016/j.csbj.2022.11.027. eCollection 2022.
6
The B. subtilis Rok protein is an atypical H-NS-like protein irresponsive to physico-chemical cues.
Nucleic Acids Res. 2022 Nov 28;50(21):12166-12185. doi: 10.1093/nar/gkac1064.
7
Effects of Global and Specific DNA-Binding Proteins on Transcriptional Regulation of the Operon.
Int J Mol Sci. 2022 Sep 7;23(18):10343. doi: 10.3390/ijms231810343.
9
Oxygen and RNA in stress-induced mutation.
Curr Genet. 2018 Aug;64(4):769-776. doi: 10.1007/s00294-017-0801-9. Epub 2018 Jan 2.
10
Regulation of gene expression: cryptic β-glucoside (bgl) operon of Escherichia coli as a paradigm.
Braz J Microbiol. 2015 Mar 4;45(4):1139-44. doi: 10.1590/s1517-83822014000400003. eCollection 2014.

本文引用的文献

1
Codon catalog usage is a genome strategy modulated for gene expressivity.
Nucleic Acids Res. 1981 Jan 10;9(1):r43-74. doi: 10.1093/nar/9.1.213-b.
2
A simple method for displaying the hydropathic character of a protein.
J Mol Biol. 1982 May 5;157(1):105-32. doi: 10.1016/0022-2836(82)90515-0.
3
System for DNA sequencing with resolution of up to 600 base pairs.
J Biochem Biophys Methods. 1984 Mar;9(1):33-47. doi: 10.1016/0165-022x(84)90064-2.
4
Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination.
Proc Natl Acad Sci U S A. 1983 Jul;80(13):3963-5. doi: 10.1073/pnas.80.13.3963.
7
The replication origin region of Escherichia coli: nucleotide sequence and functional units.
Gene. 1983 Oct;24(2-3):265-79. doi: 10.1016/0378-1119(83)90087-2.
10
Linkage map of Escherichia coli K-12, edition 7.
Microbiol Rev. 1983 Jun;47(2):180-230. doi: 10.1128/mr.47.2.180-230.1983.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验