1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
2 Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
J Dent Res. 2019 Jan;98(1):36-45. doi: 10.1177/0022034518805978. Epub 2018 Oct 24.
Precise and efficient genetic manipulations have enabled researchers to understand gene functions in disease and development, providing a platform to search for molecular cures. Over the past decade, the unprecedented advancement of genome editing techniques has revolutionized the biological research fields. Early genome editing strategies involved many naturally occurring nucleases, including meganucleases, zinc finger nucleases, and transcription activator-like effector-based nucleases. More recently, the clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated nucleases (CRISPR/Cas) system has greatly enriched genetic manipulation methods in conducting research. Those nucleases generate double-strand breaks in the target gene sequences and then utilize DNA repair mechanisms to permit precise yet versatile genetic manipulations. The oral and craniofacial field harbors a plethora of diseases and developmental defects that require genetic models that can exploit these genome editing techniques. This review provides an overview of the genome editing techniques, particularly the CRISPR/Cas9 technique, for the oral and craniofacial research community. We also discuss the details about the emerging applications of genome editing in oral and craniofacial biology.
精确而高效的基因操作使研究人员能够了解疾病和发育过程中的基因功能,为寻找分子治疗方法提供了平台。在过去的十年中,基因组编辑技术的空前进步彻底改变了生物研究领域。早期的基因组编辑策略涉及许多天然存在的核酸酶,包括巨核酸酶、锌指核酸酶和转录激活因子样效应物核酸酶。最近,簇状规律间隔短回文重复 (CRISPR) / CRISPR 相关核酸酶 (CRISPR/Cas) 系统极大地丰富了在进行研究时进行基因操作的方法。这些核酸酶在靶基因序列中产生双链断裂,然后利用 DNA 修复机制实现精确而多样的基因操作。口腔颌面领域存在许多疾病和发育缺陷,需要能够利用这些基因组编辑技术的遗传模型。本综述为口腔颌面研究界概述了基因组编辑技术,特别是 CRISPR/Cas9 技术。我们还讨论了基因组编辑在口腔颌面生物学中新兴应用的细节。