School of Aquatic & Fishery Sciences, University of Washington, Seattle, Washington, United States of America.
PLoS One. 2018 Oct 24;13(10):e0206033. doi: 10.1371/journal.pone.0206033. eCollection 2018.
Many investigations of anthropogenic and natural impacts in ecological systems attempt to detect differences in ecological variables or community composition. Frequently, ordination procedures such as principal components analysis (PCA) or canonical correspondence analysis (CCA) are used to simplify such complex data sets into a set of primary factors that express the variation across the original variables. Scatterplots of the first and second principal components are then used to visually inspect for differences in community composition between treatment groups. We present a multidimensional extension of analysis of variance based on an analysis of distance (ANODIS) that can be used to formally test for differences in community composition using 1, 2, or more dimensions of a PCA or CCA of the original sample observations. The statistical tests of significance are based on F-statistics adapted for the analysis of this multidimensional data. Because the analysis is parametric, power and sample size calculations useful in the design of field studies can be readily computed. The use of ANODIS is illustrated using bivariate PCA scatterplots from three published studies. Statistical power calculations using the noncentral F-distribution are illustrated.
许多针对生态系统中人为和自然影响的调查试图检测生态变量或群落组成的差异。通常,使用主成分分析(PCA)或典范对应分析(CCA)等排序程序将这些复杂数据集简化为一组主要因子,以表达原始变量之间的变化。然后使用第一和第二主成分的散点图直观地检查处理组之间群落组成的差异。我们提出了一种基于距离分析的方差分析多维扩展(ANODIS),可用于使用 PCA 或 CCA 的原始样本观测的 1、2 或更多维度正式检验群落组成的差异。显著性的统计检验基于适用于多维数据分析的 F 统计量。由于分析是参数化的,因此可以轻松计算野外研究设计中有用的功效和样本量计算。使用来自三个已发表研究的二元 PCA 散点图说明了 ANODIS 的使用。使用非中心 F 分布说明了统计功效计算。