Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, New York, United States of America.
Oncology Division, Department of Medicine, Montefiore Health System and Albert Einstein College of Medicine, Bronx, New York, United States of America.
PLoS One. 2023 Jan 17;18(1):e0280320. doi: 10.1371/journal.pone.0280320. eCollection 2023.
To predict pathological complete response (pCR) after neoadjuvant chemotherapy using extreme gradient boosting (XGBoost) with MRI and non-imaging data at multiple treatment timepoints.
This retrospective study included breast cancer patients (n = 117) who underwent neoadjuvant chemotherapy. Data types used included tumor ADC values, diffusion-weighted and dynamic-contrast-enhanced MRI at three treatment timepoints, and patient demographics and tumor data. GLCM textural analysis was performed on MRI data. An extreme gradient boosting machine learning algorithm was used to predict pCR. Prediction performance was evaluated using the area under the curve (AUC) of the receiver operating curve along with precision and recall.
Prediction using texture features of DWI and DCE images at multiple treatment time points (AUC = 0.871; 95% CI: (0.768, 0.974; p<0.001) and (AUC = 0.903 95% CI: 0.854, 0.952; p<0.001) respectively), outperformed that using mean tumor ADC (AUC = 0.850 (95% CI: 0.764, 0.936; p<0.001)). The AUC using all MRI data was 0.933 (95% CI: 0.836, 1.03; p<0.001). The AUC using non-MRI data was 0.919 (95% CI: 0.848, 0.99; p<0.001). The highest AUC of 0.951 (95% CI: 0.909, 0.993; p<0.001) was achieved with all MRI and all non-MRI data at all time points as inputs.
Using XGBoost on extracted GLCM features and non-imaging data accurately predicts pCR. This early prediction of response can minimize exposure to toxic chemotherapy, allowing regimen modification mid-treatment and ultimately achieving better outcomes.
利用极端梯度提升(XGBoost)技术,结合磁共振成像(MRI)和多个治疗时间点的非影像数据,预测新辅助化疗后的病理完全缓解(pCR)。
本回顾性研究纳入了 117 例接受新辅助化疗的乳腺癌患者。所使用的数据类型包括肿瘤 ADC 值、三个治疗时间点的弥散加权和动态对比增强 MRI,以及患者人口统计学和肿瘤数据。对 MRI 数据进行灰度共生矩阵(GLCM)纹理分析。使用极端梯度提升机器学习算法预测 pCR。采用接收者操作特征曲线下的面积(AUC)评估预测性能,同时评估精度和召回率。
使用多个治疗时间点的 DWI 和 DCE 图像纹理特征进行预测(AUC = 0.871;95%CI:(0.768,0.974;p<0.001)和(AUC = 0.903,95%CI:0.854,0.952;p<0.001)),优于使用平均肿瘤 ADC(AUC = 0.850(95%CI:0.764,0.936;p<0.001))。使用所有 MRI 数据的 AUC 为 0.933(95%CI:0.836,1.03;p<0.001)。使用非 MRI 数据的 AUC 为 0.919(95%CI:0.848,0.99;p<0.001)。使用所有 MRI 和所有非 MRI 数据在所有时间点作为输入时,AUC 最高,为 0.951(95%CI:0.909,0.993;p<0.001)。
使用 XGBoost 对提取的 GLCM 特征和非影像数据进行分析,可以准确预测 pCR。这种对反应的早期预测可以最大限度地减少有毒化疗的暴露,允许在治疗过程中进行方案调整,最终实现更好的结果。