Suppr超能文献

雷帕霉素靶蛋白复合物 1 通路的转录和表观遗传调控。

Transcriptional and Epigenetic Regulation by the Mechanistic Target of Rapamycin Complex 1 Pathway.

机构信息

Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Cancer Research Building Rm 318, Memphis, TN 38163, USA.

出版信息

J Mol Biol. 2018 Dec 7;430(24):4874-4890. doi: 10.1016/j.jmb.2018.10.008. Epub 2018 Oct 23.

Abstract

Nutrient availability impacts health such that nutrient excess states can dysregulate epigenetic and transcriptional pathways to cause many diseases. Increasing evidence implicates aberrant regulation of nutrient signaling cascades as one means of communicating nutrient information to the epigenetic and transcriptional regulatory machinery. One such signaling cascade, the mechanistic target of rapamycin complex 1 (mTORC1), is conserved from yeast to man, and it is deregulated in diverse disease states. The catalytic subunit of the mTORC1 kinase complex (Tor1 or Tor2 in budding yeast and mTor in mammals) phosphorylates several downstream effectors regulating transcriptional and translational responses controlling growth and proliferation. Delineating mechanisms of cytoplasmic nutrient mTORC1 activation continues to be a major research focus. However, Tor kinases not only localize to the cytoplasm but also are found in the nucleus where they selectively bind and regulate genes controlling cellular metabolism and anabolism. The nuclear mTORC1 functions are now beginning to be defined, and they suggest that mTORC1 has a critical role in regulating the complex transcriptional activities required for ribosomal biogenesis. The mTORC1 pathway also interacts with epigenetic regulators required for modifying chromatin structure and function to control gene expression. Because altered nutrient states exert both individual and transgenerational phenotypic changes, mTORC1 signaling to chromatin effectors may have a significant role in mediating the effects of diet and nutrients on the epigenome. This article will discuss the recent inroads into the function of nuclear mTORC1 and its role in epigenetic and transcriptional regulation.

摘要

营养素的可利用性会影响健康,以至于营养过剩状态会扰乱表观遗传和转录途径,从而导致许多疾病。越来越多的证据表明,营养信号级联的异常调节是将营养信息传递给表观遗传和转录调控机制的一种手段。其中一种信号级联,即机械靶标雷帕霉素复合物 1(mTORC1),从酵母到人都保守存在,并且在多种疾病状态下失调。mTORC1 激酶复合物的催化亚基(芽殖酵母中的 Tor1 或 Tor2 和哺乳动物中的 mTor)磷酸化几种下游效应物,调节转录和翻译反应,控制生长和增殖。阐明细胞质营养 mTORC1 激活的机制仍然是一个主要的研究重点。然而,Tor 激酶不仅定位在细胞质中,而且还存在于细胞核中,在细胞核中它们选择性地结合并调节控制细胞代谢和合成代谢的基因。核 mTORC1 的功能现在开始被定义,它们表明 mTORC1 在调节核糖体生物发生所需的复杂转录活性中起关键作用。mTORC1 途径还与修饰染色质结构和功能以控制基因表达所需的表观遗传调节剂相互作用。由于改变的营养状态会产生个体和跨代的表型变化,因此 mTORC1 向染色质效应物的信号传递可能在介导饮食和营养对表观基因组的影响方面发挥重要作用。本文将讨论核 mTORC1 的功能及其在表观遗传和转录调控中的最新进展。

相似文献

4
Nutrient regulation of mTORC1 at a glance.mTORC1 的营养素调控一览
J Cell Sci. 2019 Nov 13;132(21):jcs222570. doi: 10.1242/jcs.222570.

引用本文的文献

2
UPS writes a new saga of SAGA.UPS 书写了 SAGA 的新传奇。
Biochim Biophys Acta Gene Regul Mech. 2023 Dec;1866(4):194981. doi: 10.1016/j.bbagrm.2023.194981. Epub 2023 Aug 30.
4
Yeast Crf1p: An activator in need is an activator indeed.酵母Crf1p:急需的激活剂才是真正的激活剂。
Comput Struct Biotechnol J. 2021 Dec 8;20:107-116. doi: 10.1016/j.csbj.2021.12.003. eCollection 2022.
5
Maternal sirolimus therapy and fetal growth restriction.母体西罗莫司治疗与胎儿生长受限
Arch Clin Cases. 2021 Oct 27;8(2):19-24. doi: 10.22551/2021.31.0802.10180. eCollection 2021.
9
Regulation of Eukaryotic RNAPs Activities by Phosphorylation.磷酸化对真核生物RNA聚合酶活性的调控
Front Mol Biosci. 2021 Jun 25;8:681865. doi: 10.3389/fmolb.2021.681865. eCollection 2021.

本文引用的文献

1
Facing up to the global challenges of ageing.直面全球老龄化挑战。
Nature. 2018 Sep;561(7721):45-56. doi: 10.1038/s41586-018-0457-8. Epub 2018 Sep 5.
3
Chromatin and Metabolism.染色质与代谢。
Annu Rev Biochem. 2018 Jun 20;87:27-49. doi: 10.1146/annurev-biochem-062917-012634.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验