Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza L. da Vinci, 32 - 20133 Milano, Italy.
Faraday Discuss. 2019 Feb 18;213(0):453-469. doi: 10.1039/c8fd00097b.
Resistive switching random-access memory (ReRAM) is a two-terminal device based on ion migration to induce resistance switching between a high resistance state (HRS) and a low resistance state (LRS). ReRAM is considered one of the most promising technologies for artificial synapses in brain-inspired neuromorphic computing systems. However, there is still a lack of general understanding about how to develop such a gestalt system to imitate and compete with the brain's functionality and efficiency. Spiking neural networks (SNNs) are well suited to describe the complex spatiotemporal processing inside the brain, where the energy efficiency of computation mostly relies on the spike carrying information about both space (which neuron fires) and time (when a neuron fires). This work addresses the methodology and implementation of a neuromorphic SNN system to compute the temporal information among neural spikes using ReRAM synapses capable of spike-timing dependent plasticity (STDP). The learning and recognition of spatiotemporal spike sequences are experimentally demonstrated. Our simulation study shows that it is possible to construct a multi-layer spatiotemporal computing network. Spatiotemporal computing also enables learning and detection of the trace of moving objects and mimicking of the hierarchy structure of the biological visual cortex adopting temporal-coding for fast recognition.
阻变随机存取存储器 (ReRAM) 是一种基于离子迁移的二端器件,可在高阻态 (HRS) 和低阻态 (LRS) 之间诱导电阻切换。ReRAM 被认为是用于脑启发神经形态计算系统中的人工突触的最有前途的技术之一。然而,对于如何开发这样的整体系统来模拟和竞争大脑的功能和效率,仍然缺乏普遍的理解。尖峰神经网络 (SNN) 非常适合描述大脑内部复杂的时空处理,其中计算的能量效率主要依赖于携带关于空间 (哪个神经元发射) 和时间 (何时神经元发射) 信息的尖峰。这项工作解决了使用能够进行尖峰时间依赖可塑性 (STDP) 的 ReRAM 突触来计算神经尖峰之间的时间信息的神经形态 SNN 系统的方法和实现。对时空尖峰序列的学习和识别进行了实验验证。我们的模拟研究表明,构建多层时空计算网络是可能的。时空计算还能够学习和检测移动目标的轨迹,并通过采用时间编码进行快速识别来模拟生物视觉皮层的层次结构。