School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, P. R. China.
School of Public Health, Capital Medical University, Beijing, 100069, P. R. China.
Sci Rep. 2018 Oct 26;8(1):15901. doi: 10.1038/s41598-018-33165-9.
With the re-emergence of brucellosis in mainland China since the mid-1990s, an increasing threat to public health tends to become even more violent, advanced warning plays a pivotal role in the control of brucellosis. However, a model integrating the autoregressive integrated moving average (ARIMA) with Error-Trend-Seasonal (ETS) methods remains unexplored in the epidemiological prediction. The hybrid ARIMA-ETS model based on discrete wavelet transform was hence constructed to assess the epidemics of human brucellosis from January 2004 to February 2018 in mainland China. The preferred hybrid model including the best-performing ARIMA method for approximation-forecasting and the best-fitting ETS approach for detail-forecasting is evidently superior to the standard ARIMA and ETS techniques in both three in-sample simulating and out-of-sample forecasting horizons in terms of the minimum performance indices of the root mean square error, mean absolute error, mean error rate and mean absolute percentage error. Whereafter, an ahead prediction from March to December in 2018 displays a dropping trend compared to the preceding years. But being still present, in various trends, in the present or future. This hybrid model can be highlighted in predicting the temporal trends of human brucellosis, which may act as the potential for far-reaching implications for prevention and control of this disease.
自 20 世纪 90 年代中期以来,布氏杆菌病在中国内地再次出现,对公共卫生的威胁日益加剧,预警在布氏杆菌病的控制中起着至关重要的作用。然而,一种将自回归综合移动平均(ARIMA)与误差趋势季节(ETS)方法相结合的模型在流行病学预测中仍未得到探索。因此,构建了基于离散小波变换的混合 ARIMA-ETS 模型,以评估 2004 年 1 月至 2018 年 2 月中国大陆人间布鲁氏菌病的流行情况。优选的混合模型包括最佳表现的 ARIMA 方法进行近似预测和最佳拟合的 ETS 方法进行详细预测,与标准的 ARIMA 和 ETS 技术相比,在三个样本内模拟和样本外预测的最小性能指标方面,根均方误差、平均绝对误差、平均误差率和平均绝对百分比误差都明显更优。此后,2018 年 3 月至 12 月的提前预测与前几年相比呈下降趋势。但仍存在于现在或未来的各种趋势中。该混合模型可突出显示对人间布鲁氏菌病时间趋势的预测,这可能对该病的预防和控制具有深远意义。