Suppr超能文献

一种用于决策和认知控制的有偏贝叶斯推理

A Biased Bayesian Inference for Decision-Making and Cognitive Control.

作者信息

Matsumori Kaosu, Koike Yasuharu, Matsumoto Kenji

机构信息

Tamagawa University Brain Science Institute, Machida, Tokyo, Japan.

Department of Information Processing, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan.

出版信息

Front Neurosci. 2018 Oct 12;12:734. doi: 10.3389/fnins.2018.00734. eCollection 2018.

Abstract

Although classical decision-making studies have assumed that subjects behave in a Bayes-optimal way, the sub-optimality that causes biases in decision-making is currently under debate. Here, we propose a synthesis based on exponentially-biased Bayesian inference, including various decision-making and probability judgments with different bias levels. We arrange three major parameter estimation methods in a two-dimensional bias parameter space (prior and likelihood), of the biased Bayesian inference. Then, we discuss a neural implementation of the biased Bayesian inference on the basis of changes in weights in neural connections, which we regarded as a combination of leaky/unstable neural integrator and probabilistic population coding. Finally, we discuss mechanisms of cognitive control which may regulate the bias levels.

摘要

尽管经典决策研究假定受试者以贝叶斯最优方式行事,但导致决策偏差的次优性目前仍存在争议。在此,我们提出一种基于指数偏差贝叶斯推理的综合方法,包括具有不同偏差水平的各种决策和概率判断。我们在偏差贝叶斯推理的二维偏差参数空间(先验和似然)中安排了三种主要的参数估计方法。然后,我们基于神经连接权重的变化讨论偏差贝叶斯推理的神经实现,我们将其视为泄漏/不稳定神经积分器和概率群体编码的组合。最后,我们讨论了可能调节偏差水平的认知控制机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e458/6195105/2c9256c49603/fnins-12-00734-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验