Suppr超能文献

关于机器学习有望成为脊柱侧弯临床实践中一场变革的叙述性综述。

A narrative review of machine learning as promising revolution in clinical practice of scoliosis.

作者信息

Chen Kai, Zhai Xiao, Sun Kaiqiang, Wang Haojue, Yang Changwei, Li Ming

机构信息

Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China.

Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, China.

出版信息

Ann Transl Med. 2021 Jan;9(1):67. doi: 10.21037/atm-20-5495.

Abstract

Machine learning (ML), as an advanced domain of artificial intelligence (AI), is progressively changing our view of the world. By implementing its algorithms, our ability to detect previously undiscoverable patterns in data has the potential to revolutionize predictive analytics. Scoliosis, as a relatively specialized branch in the spine field, mainly covers the pediatric, adult and the elderly populations, and its diagnosis and treatment remain difficult. With recent efforts and interdisciplinary cooperation, ML has been widely applied to investigate issues related to scoliosis, and surprisingly augment a surgeon's ability in clinical practice related to scoliosis. Meanwhile, ML models penetrate in every stage of the clinical practice procedure of scoliosis. In this review, we first present a brief description of the application of ML in the clinical practice procedures regarding scoliosis, including screening, diagnosis and classification, surgical decision making, intraoperative manipulation, complication prediction, prognosis prediction and rehabilitation. Meanwhile, the ML models and specific applications adopted are presented. Additionally, current limitations and future directions are briefly discussed regarding its use in the field of scoliosis. We believe that the implementation of ML is a promising revolution to assist surgeons in all aspects of clinical practice related to scoliosis in the near future.

摘要

机器学习(ML)作为人工智能(AI)的一个先进领域,正在逐渐改变我们对世界的看法。通过实施其算法,我们在数据中检测以前无法发现的模式的能力有可能彻底改变预测分析。脊柱侧弯作为脊柱领域中一个相对专业的分支,主要涵盖儿童、成人和老年人群,其诊断和治疗仍然困难。随着最近的努力和跨学科合作,ML已被广泛应用于研究与脊柱侧弯相关的问题,并令人惊讶地增强了外科医生在脊柱侧弯临床实践中的能力。同时,ML模型渗透到脊柱侧弯临床实践过程的每个阶段。在本综述中,我们首先简要介绍ML在脊柱侧弯临床实践过程中的应用,包括筛查、诊断和分类、手术决策、术中操作、并发症预测、预后预测和康复。同时,介绍了所采用的ML模型和具体应用。此外,还简要讨论了其在脊柱侧弯领域应用的当前局限性和未来方向。我们相信,在不久的将来,ML的实施将是一场有前途的变革,可在与脊柱侧弯相关的临床实践的各个方面协助外科医生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d372/7859734/0f57e918e148/atm-09-01-67-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验