International Center for Mathematical Modeling in Physics and Cognitive Sciences Linnaeus University, Växjö, S-35195, Sweden.
National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg, Russia.
Sci Rep. 2018 Nov 1;8(1):16225. doi: 10.1038/s41598-018-34531-3.
The recent wave of interest to modeling the process of decision making with the aid of the quantum formalism gives rise to the following question: 'How can neurons generate quantum-like statistical data?' (There is a plenty of such data in cognitive psychology and social science). Our model is based on quantum-like representation of uncertainty in generation of action potentials. This uncertainty is a consequence of complexity of electrochemical processes in the brain; in particular, uncertainty of triggering an action potential by the membrane potential. Quantum information state spaces can be considered as extensions of classical information spaces corresponding to neural codes; e.g., 0/1, quiescent/firing neural code. The key point is that processing of information by the brain involves superpositions of such states. Another key point is that a neuronal group performing some psychological function F is an open quantum system. It interacts with the surrounding electrochemical environment. The process of decision making is described as decoherence in the basis of eigenstates of F. A decision state is a steady state. This is a linear representation of complex nonlinear dynamics of electrochemical states. Linearity guarantees exponentially fast convergence to the decision state.
最近,借助量子形式主义来模拟决策过程的研究兴趣日益浓厚,这引发了一个问题:“神经元如何产生类似量子的统计数据?”(认知心理学和社会科学中有大量此类数据)。我们的模型基于动作电位产生过程中不确定性的类量子表示。这种不确定性是大脑中电化学过程复杂性的结果;特别是,膜电位引发动作电位的不确定性。量子信息状态空间可以被视为与神经代码对应的经典信息空间的扩展;例如,0/1,静息/发射神经代码。关键点在于大脑处理信息涉及到这些状态的叠加。另一个关键点是,执行某些心理功能 F 的神经元群是一个开放的量子系统。它与周围的电化学环境相互作用。决策过程被描述为 F 的本征态中的退相干。决策状态是一个稳态。这是电化学状态复杂非线性动力学的线性表示。线性保证了快速收敛到决策状态。