Graduate Program in Bioengineering, University of California, Riverside, CA., USA.
Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA., USA.
Sci Rep. 2018 Nov 5;8(1):16354. doi: 10.1038/s41598-018-34455-y.
There is a critical need for better analytical methods to study mitochondria in normal and diseased states. Mitochondrial image analysis is typically done on still images using slow manual methods or automated methods of limited types of features. MitoMo integrated software overcomes these bottlenecks by automating rapid unbiased quantitative analysis of mitochondrial morphology, texture, motion, and morphogenesis and advances machine-learning classification to predict cell health by combining features. Our pixel-based approach for motion analysis evaluates the magnitude and direction of motion of: (1) molecules within mitochondria, (2) individual mitochondria, and (3) distinct morphological classes of mitochondria. MitoMo allows analysis of mitochondrial morphogenesis in time-lapse videos to study early progression of cellular stress. Biological applications are presented including: (1) establishing normal phenotypes of mitochondria in different cell types; (2) quantifying stress-induced mitochondrial hyperfusion in cells treated with an environmental toxicant, (3) tracking morphogenesis in mitochondria undergoing swelling, and (4) evaluating early changes in cell health when morphological abnormalities are not apparent. MitoMo unlocks new information on mitochondrial phenotypes and dynamics by enabling deep analysis of mitochondrial features in any cell type and can be applied to a broad spectrum of research problems in cell biology, drug testing, toxicology, and medicine.
目前,我们迫切需要更好的分析方法来研究正常和病变状态下的线粒体。线粒体的图像分析通常是在静态图像上进行的,使用的是缓慢的手动方法或有限类型特征的自动化方法。MitoMo 集成软件通过自动化对线粒体形态、纹理、运动和形态发生的快速、无偏定量分析,以及通过组合特征来进行机器学习分类以预测细胞健康,克服了这些瓶颈。我们基于像素的运动分析方法评估了:(1)线粒体内部分子,(2)单个线粒体和(3)不同形态线粒体类别的运动幅度和方向。MitoMo 允许对延时视频中的线粒体形态发生进行分析,以研究细胞应激的早期进展。生物学应用包括:(1)在不同细胞类型中建立线粒体的正常表型;(2)定量分析用环境毒物处理的细胞中应激诱导的线粒体过度融合;(3)追踪线粒体肿胀过程中的形态发生;(4)评估细胞形态异常不明显时细胞健康的早期变化。MitoMo 通过能够深入分析任何细胞类型中的线粒体特征,为线粒体表型和动力学提供了新的信息,并可应用于细胞生物学、药物测试、毒理学和医学领域的广泛研究问题。