Suppr超能文献

评估一种使用定制手机应用程序来测量行走时步数的新方法。

Assessing a novel way to measure step count while walking using a custom mobile phone application.

机构信息

Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.

School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.

出版信息

PLoS One. 2018 Nov 6;13(11):e0206828. doi: 10.1371/journal.pone.0206828. eCollection 2018.

Abstract

INTRODUCTION

Walking speed has been associated with many clinical outcomes (e.g., frailty, mortality, joint replacement need, etc.). Accurately measuring walking speed (stride length x step count/time) typically requires significant clinician/staff time or a gait lab with specialized equipment (i.e., electronic timers or motion capture). In the present study, our goal was to measure "step count" via smartphones through novel software and to compare with step tracking software that come standard with iOS and Android smartphones as a first step in walking speed measurement.

METHODS

A separate calibration and validation data collection was performed. Individuals in the calibration collection (n = 5) walked 20m at normal and slow speed (<1.0 m/s). Appropriate settings for the novel mobile application were chosen to measure step count. Individuals in the validation (n = 52) collection walked at 6m, 10m, and 20m at normal and slow walking speeds. We compared step difference (absolute difference) from observed step counts to native step tracking software and our novel software derived step counts. We used generalized estimated equation adjusted (participant level) negative binomial regression models of absolute step difference from observed step counts, to determine optimal settings (calibration) and subsequently to gauge performance of the shake algorithm settings and native step tracking software across different distances and speeds (validation).

RESULTS

For iOS/iPhone 6, when compared to observed step count, the shake service (software driven approach) significantly outperformed the embedded native step tracking software across all distances at slow speed, and for short distance (6m) at normal speed. On the Android phone, the shake service outperformed the native step tracking software at slow speed at 6 meters and 20 meters, while its performance eclipsed the native step tracking software only at 20 meters at normal speed.

DISCUSSION

Our software based approach outperformed native step tracking software across various speeds and distances and carries the advantage of having adjustable measurement parameters that can be further optimized for specific medical conditions. Such software applications will provide an effective way to capture standardized data across multiple commercial smartphone devices, facilitating the future capture of walking speed and other clinically important performance parameters that will influence clinical and home care in the era of value based care.

摘要

简介

行走速度与许多临床结果(如虚弱、死亡率、关节置换需求等)相关。准确测量行走速度(步幅长度 x 步数/时间)通常需要临床医生/工作人员花费大量时间,或者需要配备专用设备(例如电子计时器或运动捕捉)的步态实验室。在本研究中,我们的目标是通过新型软件使用智能手机来测量“步数”,并将其与 iOS 和 Android 智能手机标准配备的步距跟踪软件进行比较,以此作为行走速度测量的第一步。

方法

我们进行了单独的校准和验证数据收集。在校准数据集中,(n=5)的个体以正常和缓慢的速度(<1.0m/s)走 20 米。选择适当的新型移动应用设置来测量步数。在验证数据集中(n=52)的个体以正常和缓慢的速度在 6m、10m 和 20m 处行走。我们比较了观察到的步数与原生步距跟踪软件和我们的新型软件得出的步数之间的步数差异(绝对差异)。我们使用从观察到的步数中得出的绝对步差异的广义估计方程调整(参与者水平)负二项式回归模型,以确定最佳设置(校准),并随后评估摇动算法设置和原生步距跟踪软件在不同距离和速度下的性能(验证)。

结果

对于 iOS/iPhone6,与观察到的步数相比,摇动服务(软件驱动方法)在所有距离的慢速下以及在正常速度的短距离(6m)下均显著优于嵌入式原生步距跟踪软件。在 Android 手机上,摇动服务在慢速下的 6 米和 20 米以及正常速度下的 20 米处的性能均优于原生步距跟踪软件。

讨论

我们的基于软件的方法在各种速度和距离下均优于原生步距跟踪软件,并且具有可调节的测量参数优势,这些参数可进一步针对特定医疗条件进行优化。这种软件应用程序将为使用多个商业智能手机设备捕获标准化数据提供一种有效的方法,从而在基于价值的护理时代促进行走速度和其他对临床和家庭护理有重要影响的临床重要性能参数的未来捕获。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验