Suppr超能文献

使用 3D 卷积神经网络进行口咽临床靶区的自动勾画。

Auto-delineation of oropharyngeal clinical target volumes using 3D convolutional neural networks.

机构信息

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America. Author to whom any correspondence should be addressed.

出版信息

Phys Med Biol. 2018 Nov 7;63(21):215026. doi: 10.1088/1361-6560/aae8a9.

Abstract

Accurate clinical target volume (CTV) delineation is essential to ensure proper tumor coverage in radiation therapy. This is a particularly difficult task for head-and-neck cancer patients where detailed knowledge of the pathways of microscopic tumor spread is necessary. This paper proposes a solution to auto-segment these volumes in oropharyngeal cancer patients using a two-channel 3D U-Net architecture. The first channel feeds the network with the patient's CT image providing anatomical context, whereas the second channel provides the network with tumor location and morphological information. Radiation therapy simulation computer tomography scans and their corresponding manually delineated CTV and gross tumor volume (GTV) delineations from 285 oropharyngeal patients previously treated at MD Anderson Cancer Center were used in this study. CTV and GTV delineations underwent rigorous group peer-review prior to the start of treatment delivery. The convolutional network's parameters were fine-tuned using a training set of 210 patients using 3-fold cross-validation. During hyper-parameter selection, we use a score based on the overlap (dice similarity coefficient (DSC)) and missed volumes (false negative dice (FND)) to minimize any possible under-treatment. Three auto-delineated models were created to estimate tight, moderate, and wide CTV margin delineations. Predictions on our test set (75 patients) resulted in auto-delineations with high overlap and close surface distance agreement (DSC  >  0.75 on 96% of cases for tight and moderate auto-delineation models and 97% of cases having mean surface distance  ⩽  5.0 mm) to the ground-truth. We found that applying a 5 mm uniform margin expansion to the auto-delineated CTVs would cover at least 90% of the physician CTV volumes for a large majority of patients; however, determination of appropriate margin expansions for auto-delineated CTVs merits further investigation.

摘要

准确的临床靶区(CTV)勾画对于确保放射治疗中肿瘤的适当覆盖至关重要。对于头颈部癌症患者,这是一项特别困难的任务,因为需要详细了解肿瘤微观扩散的途径。本文提出了一种使用双通道 3D U-Net 架构自动勾画口咽癌患者这些体积的解决方案。第一个通道将患者的 CT 图像输入网络,提供解剖上下文,而第二个通道则为网络提供肿瘤位置和形态信息。本研究使用了来自 MD 安德森癌症中心的 285 名先前接受治疗的口咽癌患者的放射治疗模拟计算机断层扫描扫描及其相应的手动勾画的 CTV 和大体肿瘤体积(GTV)勾画。在开始治疗前,CTV 和 GTV 的勾画都经过了严格的组内同行评审。使用 3 折交叉验证,通过 210 名患者的训练集对卷积网络的参数进行微调。在选择超参数时,我们使用基于重叠的分数(骰子相似系数(DSC))和缺失体积(假阴性骰子(FND))来最小化任何可能的欠治疗。创建了三个自动勾画模型来估计紧密、中等和宽的 CTV 边界勾画。我们的测试集(75 名患者)的预测结果表明,自动勾画具有较高的重叠和接近表面距离的一致性(对于紧密和中等自动勾画模型,96%的病例 DSC ⁇ 0.75,97%的病例平均表面距离 ⁇ 5.0 ⁇ mm)与真实值吻合。我们发现,对于大多数患者,将自动勾画的 CTV 应用 5 毫米的均匀边界扩展将至少覆盖 90%的医生勾画的 CTV 体积;然而,对于自动勾画的 CTV,适当的边界扩展的确定需要进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验