1 Department of Radiology, Radiology Informatics Laboratory, Mayo Clinic, 3507 17th Ave NW, Rochester, MN 55901.
AJR Am J Roentgenol. 2018 Dec;211(6):1184-1193. doi: 10.2214/AJR.18.20331. Epub 2018 Nov 7.
Deep learning has shown great promise for improving medical image classification tasks. However, knowing what aspects of an image the deep learning system uses or, in a manner of speaking, sees to make its prediction is difficult.
Within a radiologic imaging context, we investigated the utility of methods designed to identify features within images on which deep learning activates. In this study, we developed a classifier to identify contrast enhancement phase from whole-slice CT data. We then used this classifier as an easily interpretable system to explore the utility of class activation map (CAMs), gradient-weighted class activation maps (Grad-CAMs), saliency maps, guided backpropagation maps, and the saliency activation map, a novel map reported here, to identify image features the model used when performing prediction.
All techniques identified voxels within imaging that the classifier used. SAMs had greater specificity than did guided backpropagation maps, CAMs, and Grad-CAMs at identifying voxels within imaging that the model used to perform prediction. At shallow network layers, SAMs had greater specificity than Grad-CAMs at identifying input voxels that the layers within the model used to perform prediction.
As a whole, voxel-level visualizations and visualizations of the imaging features that activate shallow network layers are powerful techniques to identify features that deep learning models use when performing prediction.
深度学习在改善医学图像分类任务方面显示出巨大的潜力。然而,要了解深度学习系统使用图像的哪些方面,或者换句话说,要了解系统使用图像的哪些方面来进行预测,是很困难的。
在放射影像学背景下,我们研究了用于识别深度学习激活的图像特征的方法的效用。在这项研究中,我们开发了一种从全切片 CT 数据中识别对比增强相的分类器。然后,我们使用这个分类器作为一个易于解释的系统,来探索类激活图(CAMs)、梯度加权类激活图(Grad-CAMs)、显著图、引导反向传播图和显著激活图的效用,这里报告了一种新的图,以识别模型在进行预测时使用的图像特征。
所有技术都识别出了分类器使用的成像体素。与引导反向传播图、CAMs 和 Grad-CAMs 相比,SAMs 更能准确识别出模型用于预测的成像体素。在浅层网络层,SAMs 比 Grad-CAMs 更能准确识别出模型层用于预测的输入体素。
总的来说,体素级别的可视化和激活浅层网络层的成像特征的可视化是识别深度学习模型在进行预测时使用的特征的强大技术。