Suppr超能文献

基于新兴铁电材料构建的多级神经形态器件:综述

Multi-Level Neuromorphic Devices Built on Emerging Ferroic Materials: A Review.

作者信息

Wang Cheng, Agrawal Amogh, Yu Eunseon, Roy Kaushik

机构信息

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States.

出版信息

Front Neurosci. 2021 Apr 28;15:661667. doi: 10.3389/fnins.2021.661667. eCollection 2021.

Abstract

Achieving multi-level devices is crucial to efficiently emulate key bio-plausible functionalities such as synaptic plasticity and neuronal activity, and has become an important aspect of neuromorphic hardware development. In this review article, we focus on various ferromagnetic (FM) and ferroelectric (FE) devices capable of representing multiple states, and discuss the usage of such multi-level devices for implementing neuromorphic functionalities. We will elaborate that the analog-like resistive states in ferromagnetic or ferroelectric thin films are due to the non-coherent multi-domain switching dynamics, which is fundamentally different from most memristive materials involving electroforming processes or significant ion motion. Both device fundamentals related to the mechanism of introducing multilevel states and exemplary implementations of neural functionalities built on various device structures are highlighted. In light of the non-destructive nature and the relatively simple physical process of multi-domain switching, we envision that ferroic-based multi-state devices provide an alternative pathway toward energy efficient implementation of neuro-inspired computing hardware with potential advantages of high endurance and controllability.

摘要

实现多级器件对于有效模拟关键的生物似真功能(如突触可塑性和神经元活动)至关重要,并且已成为神经形态硬件开发的一个重要方面。在这篇综述文章中,我们聚焦于能够呈现多种状态的各种铁磁(FM)和铁电(FE)器件,并讨论此类多级器件在实现神经形态功能方面的应用。我们将详细阐述铁磁或铁电薄膜中的类模拟电阻状态是由于非相干多畴开关动力学引起的,这与大多数涉及电形成过程或显著离子运动的忆阻材料有着根本区别。文中突出了与引入多能级状态机制相关的器件基本原理以及基于各种器件结构构建的神经功能的示例实现。鉴于多畴开关的无损特性和相对简单的物理过程,我们设想基于铁性的多态器件为实现具有高耐久性和可控性等潜在优势的神经启发式计算硬件提供了一条节能的替代途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de84/8115403/fc82f87848b1/fnins-15-661667-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验