Wood Alexander, Soroushmehr S M Reza, Farzaneh Negar, Fessell David, Ward Kevin R, Gryak Jonathan, Kahrobaei Delaram, Na Kayvan
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:53-56. doi: 10.1109/EMBC.2018.8512182.
Automated segmentation of the spleen in CT volumes is difficult due to variations in size, shape, and position of the spleen within the abdominal cavity as well as similarity of intensity values among organs in the abdominal cavity. In this paper we present a method for automated localization and segmentation of the spleen within axial abdominal CT volumes using trained classification models, active contours, anatomical information, and adaptive features. The results show an average Dice score of 0.873 on patients experiencing various chest, abdominal, and pelvic traumas taken at different contrast phases.
由于脾脏在腹腔内的大小、形状和位置存在差异,以及腹腔内各器官之间强度值的相似性,因此在CT容积中自动分割脾脏具有一定难度。在本文中,我们提出了一种利用训练好的分类模型、活动轮廓、解剖学信息和自适应特征在轴向腹部CT容积中自动定位和分割脾脏的方法。结果显示,在不同对比期对患有各种胸部、腹部和盆腔创伤的患者进行扫描时,平均Dice评分为0.873。