Shen Rebecca, Li Zhi, Zhang Linglin, Hua Yingqi, Mao Min, Li Zhicong, Cai Zhengdong, Qiu Yunping, Gryak Jonathan, Najarian Kayvan
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:690-693. doi: 10.1109/EMBC.2018.8512338.
Osteosarcoma is the most common type of bone cancer. The primary means of osteosarcoma diagnosis is through evaluating plain x-rays. Using image analysis techniques, features that clinicians use to diagnose osteosarcoma can be quantified and studied using computer algorithms. In this paper, we classify benign tumor patients and osteosarcoma patients using both image features and metabolomic data. These two types of feature sets are processed with feature selection algorithms - recursive feature elimination and information gain. The selected features are then assessed by two classification models - random forest and support vector machine (SVM). The performances of the two models are evaluated and compared using receiver operating characteristic curves. The random forest classifier outperformed the SVM, with a sensitivity of .92 and a specificity of .78.
骨肉瘤是最常见的骨癌类型。骨肉瘤诊断的主要手段是通过评估普通X光片。利用图像分析技术,临床医生用于诊断骨肉瘤的特征可以通过计算机算法进行量化和研究。在本文中,我们使用图像特征和代谢组学数据对良性肿瘤患者和骨肉瘤患者进行分类。这两种类型的特征集通过特征选择算法——递归特征消除和信息增益进行处理。然后,通过两种分类模型——随机森林和支持向量机(SVM)对所选特征进行评估。使用受试者工作特征曲线评估和比较这两种模型的性能。随机森林分类器的表现优于支持向量机,灵敏度为0.92,特异性为0.78。