Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States.
J Biomed Opt. 2018 Nov;23(12):1-9. doi: 10.1117/1.JBO.23.12.121615.
We report a near-infrared spectroscopy (NIRS) study of coherent hemodynamic oscillations measured on the human forehead at multiple source-detector distances (1 to 4 cm). The physiological source of the coherent hemodynamics is arterial blood pressure oscillations at a frequency of 0.1 Hz, induced by cyclic inflation (to a pressure of 200 mmHg) and deflation of two thigh cuffs wrapped around the subject's thighs. To interpret our results, we use a recently developed hemodynamic model and a phasor representation of the oscillations of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentrations in the tissue (phasors O, D, and T, respectively). The increase in the phase angle between D and O at larger source-detector separations is assigned to greater flow versus volume contributions and to a stronger blood flow autoregulation in deeper tissue (brain cortex) with respect to superficial tissue (scalp and skull). The relatively constant phase lag of T versus arterial blood pressure oscillations at all source-detector distances was assigned to competing effects from stronger autoregulation and smaller arterial-to-venous contributions in deeper tissue with respect to superficial tissue. We demonstrate the application of a hemodynamic model to interpret coherent hemodynamics measured with NIRS and to assess the different nature of shallow (extracerebral) versus deep (cerebral) tissue hemodynamics.
我们报告了一项近红外光谱 (NIRS) 研究,该研究测量了人类前额在多个源-探测器距离(1 至 4 厘米)处的相干血液动力学振荡。相干血液动力学的生理源是动脉血压在 0.1 Hz 的频率下的振荡,由周期性充气(至 200 mmHg 的压力)和围绕受试者大腿的两个大腿袖带的放气引起。为了解释我们的结果,我们使用了最近开发的血液动力学模型和组织中氧合血红蛋白、脱氧血红蛋白和总血红蛋白浓度振荡的相量表示(分别为相量 O、D 和 T)。在较大的源-探测器分离处,D 和 O 之间的相位角增加被分配给更大的流量与体积贡献,以及更深组织(大脑皮层)相对于浅层组织(头皮和颅骨)更强的血流自动调节。在所有源-探测器距离处,T 与动脉血压振荡的相对恒定的相位滞后被分配给在更深组织中更强的自动调节和更小的动脉到静脉贡献的竞争效应,相对于浅层组织。我们展示了一种血液动力学模型在解释用 NIRS 测量的相干血液动力学和评估浅层(脑外)和深层(脑)组织血液动力学的不同性质方面的应用。