Suppr超能文献

推特上的糖尿病:一项情感分析。

Diabetes on Twitter: A Sentiment Analysis.

作者信息

Gabarron Elia, Dorronzoro Enrique, Rivera-Romero Octavio, Wynn Rolf

机构信息

1 Norwegian Centre for E-health Research, University Hospital of North Norway, Tromsø, Norway.

2 Department of Electronic Technology, Universidad de Sevilla, Sevilla, Spain.

出版信息

J Diabetes Sci Technol. 2019 May;13(3):439-444. doi: 10.1177/1932296818811679. Epub 2018 Nov 19.

Abstract

BACKGROUND

Contents published on social media have an impact on individuals and on their decision making. Knowing the sentiment toward diabetes is fundamental to understanding the impact that such information could have on people affected with this health condition and their family members. The objective of this study is to analyze the sentiment expressed in messages on diabetes posted on Twitter.

METHOD

Tweets including one of the terms "diabetes," "t1d," and/or "t2d" were extracted for one week using the Twitter standard API. Only the text message and the number of followers of the users were extracted. The sentiment analysis was performed by using SentiStrength.

RESULTS

A total of 67 421 tweets were automatically extracted, of those 3.7% specifically referred to T1D; and 6.8% specifically mentioned T2D. One or more emojis were included in 7.0% of the posts. Tweets specifically mentioning T2D and that did not include emojis were significantly more negative than the tweets that included emojis (-2.22 vs -1.48, P < .001). Tweets on T1D and that included emojis were both significantly more positive and also less negative than tweets without emojis (1.71 vs 1.49 and -1.31 vs -1.50, respectively; P < .005). The number of followers had a negative association with positive sentiment strength ( r = -.023, P < .001) and a positive association with negative sentiment ( r = .016, P < .001).

CONCLUSION

The use of sentiment analysis techniques on social media could increase our knowledge of how social media impact people with diabetes and their families and could help to improve public health strategies.

摘要

背景

社交媒体上发布的内容会对个人及其决策产生影响。了解对糖尿病的看法对于理解此类信息可能对患有这种健康状况的人群及其家庭成员产生的影响至关重要。本研究的目的是分析在推特上发布的有关糖尿病的信息中所表达的看法。

方法

使用推特标准应用程序编程接口(API),在一周内提取包含“糖尿病”“1型糖尿病”和/或“2型糖尿病”等术语之一的推文。仅提取文本信息和用户的关注者数量。使用情感强度分析工具(SentiStrength)进行情感分析。

结果

共自动提取了67421条推文,其中3.7%专门提及1型糖尿病,6.8%专门提及2型糖尿病。7.0%的帖子中包含一个或多个表情符号。专门提及2型糖尿病且不包含表情符号的推文比包含表情符号的推文明显更负面(-2.22对-1.48,P <.001)。关于1型糖尿病且包含表情符号的推文比不包含表情符号的推文在积极方面更显著,在消极方面也更不明显(分别为1.71对1.49和-1.31对-1.50;P <.005)。关注者数量与积极情感强度呈负相关(r = -.023,P <.001),与消极情感呈正相关(r =.016,P <.001)。

结论

在社交媒体上使用情感分析技术可以增加我们对社交媒体如何影响糖尿病患者及其家庭的了解,并有助于改进公共卫生策略。

相似文献

1
Diabetes on Twitter: A Sentiment Analysis.
J Diabetes Sci Technol. 2019 May;13(3):439-444. doi: 10.1177/1932296818811679. Epub 2018 Nov 19.
2
Identifying Sentiment of Hookah-Related Posts on Twitter.
JMIR Public Health Surveill. 2017 Oct 18;3(4):e74. doi: 10.2196/publichealth.8133.
3
Sentiment of Emojis.
PLoS One. 2015 Dec 7;10(12):e0144296. doi: 10.1371/journal.pone.0144296. eCollection 2015.
5
Population attitudes toward contraceptive methods over time on a social media platform.
Am J Obstet Gynecol. 2021 Jun;224(6):597.e1-597.e14. doi: 10.1016/j.ajog.2020.11.042. Epub 2020 Dec 9.
6
Stroke Survivors on Twitter: Sentiment and Topic Analysis From a Gender Perspective.
J Med Internet Res. 2019 Aug 26;21(8):e14077. doi: 10.2196/14077.
7
Emotion diffusion effect: Negative sentiment COVID-19 tweets of public organizations attract more responses from followers.
PLoS One. 2022 Mar 8;17(3):e0264794. doi: 10.1371/journal.pone.0264794. eCollection 2022.
8
Twitter Discussions on #digitaldementia: Content and Sentiment Analysis.
J Med Internet Res. 2024 Jul 16;26:e59546. doi: 10.2196/59546.

引用本文的文献

4
Whose tweets about obesity and weight loss gain the most attention: celebrities, political, or medical authorities?
Int J Obes (Lond). 2025 Apr;49(4):673-681. doi: 10.1038/s41366-024-01689-y. Epub 2024 Nov 26.
5
Predicting hospital length of stay using machine learning on a large open health dataset.
BMC Health Serv Res. 2024 Jul 29;24(1):860. doi: 10.1186/s12913-024-11238-y.
6
Topic modeling and social network analysis approach to explore diabetes discourse on Twitter in India.
Front Artif Intell. 2024 Feb 12;7:1329185. doi: 10.3389/frai.2024.1329185. eCollection 2024.
8
Mapping obesity and diabetes' representation on Twitter: the case of Italy.
Front Sociol. 2023 Jun 15;8:1155849. doi: 10.3389/fsoc.2023.1155849. eCollection 2023.
9
What are IBD Patients Talking About on Twitter? Using Natural Language Understanding to Investigate Patients' Tweets.
SN Comput Sci. 2023;4(4):343. doi: 10.1007/s42979-023-01772-7. Epub 2023 Apr 20.
10
Sentiment analysis of tweets on alopecia areata, hidradenitis suppurativa, and psoriasis: Revealing the patient experience.
Front Med (Lausanne). 2022 Oct 31;9:996378. doi: 10.3389/fmed.2022.996378. eCollection 2022.

本文引用的文献

1
What Are Diabetes Patients Versus Health Care Personnel Discussing on Social Media?
J Diabetes Sci Technol. 2019 Mar;13(2):198-205. doi: 10.1177/1932296818821649. Epub 2019 Jan 13.
2
Knowledge will Propel Machine Understanding of Content: Extrapolating from Current Examples.
Proc IEEE WIC ACM Int Conf Web Intell Intell Agent Technol. 2017 Aug;2017:1-9. doi: 10.1145/3106426.3109448.
3
The 'who' and 'what' of #diabetes on Twitter.
Digit Health. 2017 Jan 1;3:2055207616688841. doi: 10.1177/2055207616688841. eCollection 2017 Jan-Dec.
5
Sentiment Analysis of Health Care Tweets: Review of the Methods Used.
JMIR Public Health Surveill. 2018 Apr 23;4(2):e43. doi: 10.2196/publichealth.5789.
6
Assessing mobile health applications with twitter analytics.
Int J Med Inform. 2018 May;113:72-84. doi: 10.1016/j.ijmedinf.2018.02.016. Epub 2018 Feb 27.
7
Research on gender differences in online health communities.
Int J Med Inform. 2018 Mar;111:172-181. doi: 10.1016/j.ijmedinf.2017.12.019. Epub 2018 Jan 9.
8
Emotional influence in groups: the dynamic nexus of affect, cognition, and behavior.
Curr Opin Psychol. 2017 Oct;17:156-161. doi: 10.1016/j.copsyc.2017.07.017. Epub 2017 Jul 19.
9
EmojiNet: Building a Machine Readable Sense Inventory for Emoji.
Proc Int Workshop Soc Inform. 2016 Nov;10046:527-541. doi: 10.1007/978-3-319-47880-7_33. Epub 2016 Oct 23.
10
Artificial Intelligence-Assisted Online Social Therapy for Youth Mental Health.
Front Psychol. 2017 Jun 2;8:796. doi: 10.3389/fpsyg.2017.00796. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验