Suppr超能文献

收缩环张力产生与收缩的机制。

Mechanisms of contractile ring tension production and constriction.

作者信息

O'Shaughnessy Ben, Thiyagarajan Sathish

机构信息

Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA.

出版信息

Biophys Rev. 2018 Dec;10(6):1667-1681. doi: 10.1007/s12551-018-0476-6. Epub 2018 Nov 19.

Abstract

The contractile ring is a remarkable tension-generating cellular machine that constricts and divides cells into two during cytokinesis, the final stage of the cell cycle. Since the ring's discovery, the parallels with muscle have been emphasized. Both are contractile actomyosin machineries, and long ago, a muscle-like sliding filament mechanism was proposed for the ring. This review focuses on the mechanisms that generate ring tension and constrict contractile rings. The emphasis is on fission yeast, whose contractile ring is sufficiently well characterized that realistic mathematical models are feasible, and possible lessons from fission yeast that may apply to animal cells are discussed. Recent discoveries relevant to the organization in fission yeast rings suggest a stochastic steady-state version of the classic sliding filament mechanism for tension. The importance of different modes of anchoring for tension production and for organizational stability of constricting rings is discussed. Possible mechanisms are discussed that set the constriction rate and enable the contractile ring to meet the technical challenge of maintaining structural integrity and tension-generating capacity while continuously disassembling throughout constriction.

摘要

收缩环是一种非凡的产生张力的细胞机器,在细胞周期的最后阶段——胞质分裂过程中,它会收缩并将细胞一分为二。自收缩环被发现以来,人们一直强调它与肌肉的相似之处。两者都是收缩性的肌动球蛋白机器,并且早在很久以前,就有人提出收缩环存在类似肌肉的滑动丝机制。本综述聚焦于产生环张力并收缩收缩环的机制。重点是裂殖酵母,其收缩环特征充分明确,以至于可行的真实数学模型得以建立,同时还讨论了裂殖酵母中可能适用于动物细胞的经验教训。与裂殖酵母环的组织相关的最新发现表明了一种经典滑动丝张力机制的随机稳态版本。讨论了不同锚定模式对于产生张力以及收缩环组织稳定性的重要性。还讨论了设定收缩速率并使收缩环能够应对在整个收缩过程中持续解体的同时保持结构完整性和产生张力能力这一技术挑战的可能机制。

相似文献

1
Mechanisms of contractile ring tension production and constriction.收缩环张力产生与收缩的机制。
Biophys Rev. 2018 Dec;10(6):1667-1681. doi: 10.1007/s12551-018-0476-6. Epub 2018 Nov 19.

引用本文的文献

6
Actomyosin-Driven Division of a Synthetic Cell.肌球蛋白驱动的合成细胞分裂。
ACS Synth Biol. 2022 Oct 21;11(10):3120-3133. doi: 10.1021/acssynbio.2c00287. Epub 2022 Sep 27.
8
Encapsulated actomyosin patterns drive cell-like membrane shape changes.封装的肌动球蛋白模式驱动细胞样膜形状变化。
iScience. 2022 Apr 12;25(5):104236. doi: 10.1016/j.isci.2022.104236. eCollection 2022 May 20.

本文引用的文献

1
FORCE EXERTED BY THE CLEAVAGE FURROW OF SEA URCHIN EGGS.海胆卵分裂沟施加的力。
Dev Growth Differ. 1975;17(1):27-38. doi: 10.1111/j.1440-169X.1975.00027.x.
4
Structure of the fission yeast actomyosin ring during constriction.裂殖酵母肌球蛋白环在收缩过程中的结构。
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1455-E1464. doi: 10.1073/pnas.1711218115. Epub 2018 Jan 18.
7
Nanoscale architecture of the contractile ring.收缩环的纳米级结构。
Elife. 2017 Sep 15;6:e28865. doi: 10.7554/eLife.28865.
10
The Abscission Checkpoint: Making It to the Final Cut.细胞分离检查点:走向最终关卡
Trends Cell Biol. 2017 Jan;27(1):1-11. doi: 10.1016/j.tcb.2016.10.001. Epub 2016 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验