Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD, USA.
Sci Data. 2018 Nov 20;5:180251. doi: 10.1038/sdata.2018.251.
Radiology images are an essential part of clinical decision making and population screening, e.g., for cancer. Automated systems could help clinicians cope with large amounts of images by answering questions about the image contents. An emerging area of artificial intelligence, Visual Question Answering (VQA) in the medical domain explores approaches to this form of clinical decision support. Success of such machine learning tools hinges on availability and design of collections composed of medical images augmented with question-answer pairs directed at the content of the image. We introduce VQA-RAD, the first manually constructed dataset where clinicians asked naturally occurring questions about radiology images and provided reference answers. Manual categorization of images and questions provides insight into clinically relevant tasks and the natural language to phrase them. Evaluating with well-known algorithms, we demonstrate the rich quality of this dataset over other automatically constructed ones. We propose VQA-RAD to encourage the community to design VQA tools with the goals of improving patient care.
放射影像学是临床决策和人群筛查(例如癌症筛查)的重要组成部分。自动化系统可以通过回答有关图像内容的问题来帮助临床医生处理大量图像。人工智能领域的一个新兴领域,即医学领域的视觉问答(VQA),正在探索这种临床决策支持形式的方法。此类机器学习工具的成功与否取决于是否可以获得并设计由医学图像以及针对图像内容的问题-答案对组成的集合。我们引入了 VQA-RAD,这是第一个由临床医生针对放射影像学图像提出自然问题并提供参考答案的手动构建数据集。对图像和问题的手动分类为临床相关任务及其自然语言提供了深入了解。通过使用知名算法进行评估,我们证明了该数据集比其他自动构建数据集具有更高的质量。我们提出 VQA-RAD 是为了鼓励社区设计 VQA 工具,目标是改善患者护理。