Suppr超能文献

生成式人工智能模型在泰国东北部老年人准确处方标签识别和信息检索中的应用

Application of Generative Artificial Intelligence Models for Accurate Prescription Label Identification and Information Retrieval for the Elderly in Northern East of Thailand.

作者信息

Thetbanthad Parinya, Sathanarugsawait Benjaporn, Praneetpolgrang Prasong

机构信息

School of Information Technology, Sripatum University, Bangkok 10900, Thailand.

出版信息

J Imaging. 2025 Jan 6;11(1):11. doi: 10.3390/jimaging11010011.

Abstract

This study introduces a novel AI-driven approach to support elderly patients in Thailand with medication management, focusing on accurate drug label interpretation. Two model architectures were explored: a Two-Stage Optical Character Recognition (OCR) and Large Language Model (LLM) pipeline combining EasyOCR with Qwen2-72b-instruct and a Uni-Stage Visual Question Answering (VQA) model using Qwen2-72b-VL. Both models operated in a zero-shot capacity, utilizing Retrieval-Augmented Generation (RAG) with DrugBank references to ensure contextual relevance and accuracy. Performance was evaluated on a dataset of 100 diverse prescription labels from Thai healthcare facilities, using RAG Assessment (RAGAs) metrics to assess Context Recall, Factual Correctness, Faithfulness, and Semantic Similarity. The Two-Stage model achieved high accuracy (94%) and strong RAGAs scores, particularly in Context Recall (0.88) and Semantic Similarity (0.91), making it well-suited for complex medication instructions. In contrast, the Uni-Stage model delivered faster response times, making it practical for high-volume environments such as pharmacies. This study demonstrates the potential of zero-shot AI models in addressing medication management challenges for the elderly by providing clear, accurate, and contextually relevant label interpretations. The findings underscore the adaptability of AI in healthcare, balancing accuracy and efficiency to meet various real-world needs.

摘要

本研究引入了一种新型的人工智能驱动方法,以支持泰国老年患者进行药物管理,重点在于准确解读药品标签。研究探索了两种模型架构:一种是将EasyOCR与Qwen2 - 72b - instruct相结合的两阶段光学字符识别(OCR)和大语言模型(LLM)管道,另一种是使用Qwen2 - 72b - VL的单阶段视觉问答(VQA)模型。两种模型均以零样本能力运行,利用带有DrugBank参考文献的检索增强生成(RAG)来确保上下文相关性和准确性。使用RAG评估(RAGAs)指标对来自泰国医疗机构的100个不同处方标签数据集进行性能评估,以评估上下文召回率、事实正确性、忠实性和语义相似性。两阶段模型取得了较高的准确率(94%)和强大的RAGAs分数,特别是在上下文召回率(0.88)和语义相似性(0.91)方面,使其非常适合复杂的用药说明。相比之下,单阶段模型的响应时间更快,使其适用于药房等高流量环境。本研究通过提供清晰、准确且上下文相关的标签解读,展示了零样本人工智能模型在应对老年患者药物管理挑战方面的潜力。研究结果强调了人工智能在医疗保健中的适应性,在准确性和效率之间取得平衡以满足各种现实世界需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验