Suppr超能文献

SMCNet:用于增强3D分类中抗干扰能力的状态空间模型

SMCNet: State-Space Model for Enhanced Corruption Robustness in 3D Classification.

作者信息

Li Junhui, Huang Bangju, Pan Lei

机构信息

College of Air Traffic Management, Civil Aviation Flight University of China, Deyang 618307, China.

School of Computer Science, Civil Aviation Flight University of China, Deyang 618307, China.

出版信息

Sensors (Basel). 2024 Dec 9;24(23):7861. doi: 10.3390/s24237861.

Abstract

Accurate classification of three-dimensional (3D) point clouds in real-world environments is often impeded by sensor noise, occlusions, and incomplete data. To overcome these challenges, we propose SMCNet, a robust multimodal framework for 3D point cloud classification. SMCNet combines multi-view projection and neural radiance fields (NeRFs) to generate high-fidelity 2D representations with enhanced texture realism, addressing occlusions and lighting inconsistencies effectively. The Mamba model is further refined within this framework by integrating a depth perception module to capture long-range point interactions and adopting a dual-channel structure to enhance point-wise feature extraction. Fine-tuning adapters for the CLIP and Mamba models are also introduced, significantly improving cross-domain adaptability. Additionally, an intelligent voting mechanism aggregates predictions from multiple viewpoints, ensuring enhanced classification robustness. Comprehensive experiments demonstrate that SMCNet achieves state-of-the-art performance, outperforming the PointNet++ baseline with a 0.5% improvement in mean overall accuracy (mOA) on ModelNet40 and a 7.9% improvement on ScanObjectNN. In corruption resistance, SMCNet reduces the mean corruption error (mCE) by 0.8% on ModelNet40-C and 3.6% on ScanObjectNN-C. These results highlight the effectiveness of SMCNet in tackling real-world classification scenarios with noisy and corrupted data.

摘要

在现实世界环境中,三维(3D)点云的准确分类常常受到传感器噪声、遮挡和数据不完整的阻碍。为了克服这些挑战,我们提出了SMCNet,这是一个用于3D点云分类的强大多模态框架。SMCNet结合了多视图投影和神经辐射场(NeRFs),以生成具有增强纹理真实感的高保真2D表示,有效解决遮挡和光照不一致问题。通过集成深度感知模块来捕获远距离点交互,并采用双通道结构来增强逐点特征提取,曼巴模型在该框架内得到了进一步优化。还引入了针对CLIP和曼巴模型的微调适配器,显著提高了跨域适应性。此外,一种智能投票机制聚合来自多个视点的预测,确保增强分类的鲁棒性。综合实验表明,SMCNet取得了领先的性能,在ModelNet40上的平均总体准确率(mOA)比PointNet++基线提高了0.5%,在ScanObjectNN上提高了7.9%。在抗损坏能力方面,SMCNet在ModelNet40-C上的平均损坏误差(mCE)降低了0.8%,在ScanObjectNN-C上降低了3.6%。这些结果突出了SMCNet在处理带有噪声和损坏数据的现实世界分类场景中的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3573/11644944/17e6d88b4fde/sensors-24-07861-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验