Department of Neurology, Yale University, New Haven, Connecticut 06510.
Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut 06516, and.
J Neurosci. 2019 Jan 16;39(3):382-392. doi: 10.1523/JNEUROSCI.2433-18.2018. Epub 2018 Nov 20.
Pain is a complex process that involves both detection in the peripheral nervous system and perception in the CNS. Individual-to-individual differences in pain are well documented, but not well understood. Here we capitalized on inherited erythromelalgia (IEM), a well characterized human genetic model of chronic pain, and studied a unique family containing related IEM subjects with the same disease-causing Na1.7 mutation, which is known to make dorsal root ganglion (DRG) neurons hyperexcitable, but different pain profiles (affected son with severe pain, affected mother with moderate pain, and an unaffected father). We show, first, that, at least in some cases, relative sensitivity to pain can be modeled in subject-specific induced pluripotent stem cell (iPSC)-derived sensory neurons ; second, that, in some cases, mechanisms operating in peripheral sensory neurons contribute to interindividual differences in pain; and third, using whole exome sequencing (WES) and dynamic clamp, we show that it is possible to pinpoint a specific variant of another gene, in this particular kindred, that modulates the excitability of iPSC-derived sensory neurons in this family. While different gene variants may modulate DRG neuron excitability and thereby contribute to interindividual differences in pain in other families, this study shows that subject-specific iPSCs can be used to model interindividual differences in pain. We further provide proof-of-principle that iPSCs, WES, and dynamic clamp can be used to investigate peripheral mechanisms and pinpoint specific gene variants that modulate pain signaling and contribute to interindividual differences in pain. Individual-to-individual differences in pain are well documented, but not well understood. In this study, we show, first, that, at least in some cases, relative sensitivity to pain can be modeled in subject-specific induced pluripotent stem cell-derived sensory neurons ; second, that, in some cases, mechanisms operating in peripheral sensory neurons contribute to interindividual differences in pain; and third, using whole exome sequencing and dynamic clamp, we show that it is possible to pinpoint a specific gene variant that modulates pain signaling and contributes to interindividual differences in pain.
疼痛是一个涉及外周神经系统检测和中枢神经系统感知的复杂过程。个体之间的疼痛差异有充分的记录,但尚未得到很好的理解。在这里,我们利用遗传性红斑性肢痛症(IEM),这是一种慢性疼痛的人类遗传模型,研究了一个独特的家族,其中包含具有相同致病 Na1.7 突变的相关 IEM 受试者,该突变已知使背根神经节(DRG)神经元过度兴奋,但疼痛特征不同(受影响的儿子疼痛剧烈,受影响的母亲疼痛中度,未受影响的父亲)。我们首先表明,至少在某些情况下,可以在特定于个体的诱导多能干细胞(iPSC)衍生感觉神经元中模拟对疼痛的相对敏感性;其次,在某些情况下,外周感觉神经元中的机制有助于个体之间的疼痛差异;第三,使用全外显子组测序(WES)和动态钳位,我们表明可以在这个特定的家族中,确定另一个基因的特定变体,该变体调节该家族中 iPSC 衍生感觉神经元的兴奋性。虽然不同的基因变体可能调节 DRG 神经元的兴奋性,从而导致其他家族中个体之间的疼痛差异,但这项研究表明,可以使用特定于个体的 iPSCs 来模拟个体之间的疼痛差异。我们进一步提供了原理证明,即 iPSCs、WES 和动态钳位可用于研究外周机制并确定特定的基因变体,这些变体调节疼痛信号并导致个体之间的疼痛差异。个体之间的疼痛差异有充分的记录,但尚未得到很好的理解。在这项研究中,我们首先表明,至少在某些情况下,可以在特定于个体的诱导多能干细胞衍生感觉神经元中模拟对疼痛的相对敏感性;其次,在某些情况下,外周感觉神经元中的机制有助于个体之间的疼痛差异;第三,使用全外显子组测序和动态钳位,我们表明可以确定特定的基因变体,该变体调节疼痛信号并导致个体之间的疼痛差异。