Suppr超能文献

机器人辅助激光组织焊接系统。

Robot-assisted laser tissue soldering system.

作者信息

Basov Svetlana, Milstein Amit, Sulimani Erez, Platkov Max, Peretz Eli, Rattunde Marcel, Wagner Joachim, Netz Uri, Katzir Abraham, Nisky Ilana

机构信息

Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel.

Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.

出版信息

Biomed Opt Express. 2018 Oct 19;9(11):5635-5644. doi: 10.1364/BOE.9.005635. eCollection 2018 Nov 1.

Abstract

Fast and reliable incision closure is critical in any surgical intervention. Common solutions are sutures and clips or adhesives, but they all present difficulties. These difficulties are especially pronounced in classical and robot-assisted minimally-invasive interventions. Laser soldering methods present a promising alternative, but their reproducibility is limited. We present a system that combines a previously reported laser soldering system with a robotic system, and demonstrate its feasibility on the incision-closure of ex-vivo mice skins. In this demonstration, we measured tearing forces of ~2.5N, 73% of the tearing force of a mouse skin without an incision. This robot-assisted laser soldering technique has the potential to make laser tissue soldering more reproducible and revolutionize surgical tissue bonding.

摘要

在任何外科手术中,快速可靠的切口闭合都至关重要。常见的解决方案是缝线、夹子或粘合剂,但它们都存在困难。这些困难在传统手术和机器人辅助的微创手术中尤为明显。激光焊接方法是一种很有前景的替代方案,但其可重复性有限。我们展示了一种将先前报道的激光焊接系统与机器人系统相结合的系统,并在离体小鼠皮肤的切口闭合上证明了其可行性。在这个演示中,我们测量到撕裂力约为2.5N,是未切开小鼠皮肤撕裂力的73%。这种机器人辅助激光焊接技术有可能使激光组织焊接更具可重复性,并彻底改变手术组织粘合方式。

相似文献

1
Robot-assisted laser tissue soldering system.
Biomed Opt Express. 2018 Oct 19;9(11):5635-5644. doi: 10.1364/BOE.9.005635. eCollection 2018 Nov 1.
3
Nanoshell assisted laser soldering of vascular tissue.
Lasers Surg Med. 2011 Dec;43(10):975-83. doi: 10.1002/lsm.21140. Epub 2011 Nov 22.
6
Terahertz three-dimensional monitoring of nanoparticle-assisted laser tissue soldering.
Biomed Opt Express. 2020 Mar 27;11(4):2254-2267. doi: 10.1364/BOE.389561. eCollection 2020 Apr 1.
7
Closure of skin incisions in rabbits by laser soldering: I: Wound healing pattern.
Lasers Surg Med. 2004;35(1):1-11. doi: 10.1002/lsm.20074.
8
A scanning electron microscopy study of CO2 laser-albumin soldering in the rabbit model.
Photomed Laser Surg. 2004 Dec;22(6):461-9. doi: 10.1089/pho.2004.22.461.
10
Effect of laser soldering irradiation on covalent bonds of pure collagen.
Lasers Med Sci. 2007 Mar;22(1):10-4. doi: 10.1007/s10103-006-0411-0. Epub 2006 Nov 7.

引用本文的文献

1
Laser Soldering of Cartilage Tissue to Collagenous Biomaterial (an Study).
Sovrem Tekhnologii Med. 2023;15(6):31-37. doi: 10.17691/stm2023.15.6.04. Epub 2023 Dec 27.
2
An Augmented Reality Visor for Intraoperative Visualization, Guidance, and Temperature Monitoring Using Fluorescence.
J Biophotonics. 2025 Feb;18(2):e202400417. doi: 10.1002/jbio.202400417. Epub 2024 Dec 23.
3
Robotic Laser Tissue Soldering for Atraumatic Soft Tissue Fusion Guided by Fluorescent Nanothermometry.
Adv Sci (Weinh). 2025 Feb;12(7):e2406671. doi: 10.1002/advs.202406671. Epub 2024 Nov 21.
4
Bubble dynamics and speed of jets for needle-free injections produced by thermocavitation.
J Biomed Opt. 2023 Jul;28(7):075004. doi: 10.1117/1.JBO.28.7.075004. Epub 2023 Jul 21.
5
Laser tissue soldering of the gastrointestinal tract: A systematic review LTS of the gastrointestinal tract.
Heliyon. 2023 May 1;9(5):e16018. doi: 10.1016/j.heliyon.2023.e16018. eCollection 2023 May.
6
Cyanine-Doped Nanofiber Mats for Laser Tissue Bonding.
Nanomaterials (Basel). 2022 May 9;12(9):1613. doi: 10.3390/nano12091613.
7
Robotic-arm-assisted flexible large field-of-view optical coherence tomography.
Biomed Opt Express. 2021 Jul 1;12(7):4596-4609. doi: 10.1364/BOE.431318.
9
Strong bonding of corneal incisions using a noncontact fiber-optic laser soldering method.
J Biomed Opt. 2019 Dec;24(12):1-9. doi: 10.1117/1.JBO.24.12.128002.
10
Mid-infrared Lasers for Medical Applications: introduction to the feature issue.
Biomed Opt Express. 2018 Nov 15;9(12):6255-6257. doi: 10.1364/BOE.9.006255. eCollection 2018 Dec 1.

本文引用的文献

2
Preliminary experience in transoral laryngeal surgery with a flexible robotic system for benign lesions of the vocal folds.
Eur Arch Otorhinolaryngol. 2018 Mar;275(3):761-765. doi: 10.1007/s00405-018-4900-0. Epub 2018 Feb 7.
3
Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites.
Lasers Surg Med. 2018 Feb;50(2):143-152. doi: 10.1002/lsm.22746. Epub 2017 Oct 9.
4
Supervised autonomous robotic soft tissue surgery.
Sci Transl Med. 2016 May 4;8(337):337ra64. doi: 10.1126/scitranslmed.aad9398.
6
ESPRESSO: A novel device for laser-assisted surgery of the anterior eye segment.
Minim Invasive Ther Allied Technol. 2016;25(2):70-8. doi: 10.3109/13645706.2015.1092450. Epub 2015 Oct 1.
7
Robot-assisted surgery: an emerging platform for human neuroscience research.
Front Hum Neurosci. 2015 Jun 4;9:315. doi: 10.3389/fnhum.2015.00315. eCollection 2015.
8
Cataract surgery and methods of wound closure: a review.
Clin Ophthalmol. 2015 May 22;9:921-8. doi: 10.2147/OPTH.S83552. eCollection 2015.
9
Online estimation of laser incision depth for transoral microsurgery: approach and preliminary evaluation.
Int J Med Robot. 2016 Mar;12(1):53-61. doi: 10.1002/rcs.1656. Epub 2015 Apr 16.
10
Corneal cut closure using temperature-controlled CO2 laser soldering system.
Lasers Med Sci. 2015 May;30(4):1367-71. doi: 10.1007/s10103-015-1737-2. Epub 2015 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验