文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过多层细胞培养模型阐明纳米颗粒在实体瘤中的摄取和分布

Elucidating the Uptake and Distribution of Nanoparticles in Solid Tumors via a Multilayered Cell Culture Model.

作者信息

Yohan Darren, Cruje Charmainne, Lu Xiaofeng, Chithrani Devika

机构信息

1Department of Physics, Ryerson University, 350 Victoria Street, Toronto, ON Canada.

2Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada.

出版信息

Nanomicro Lett. 2015;7(2):127-137. doi: 10.1007/s40820-014-0025-1. Epub 2014 Dec 23.


DOI:10.1007/s40820-014-0025-1
PMID:30464963
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6223939/
Abstract

Multicellular layers (MCLs) have previously been used to determine the pharmacokinetics of a variety of different cancer drugs including paclitaxel, doxorubicin, methotrexate, and 5-fluorouracil across a number of cell lines. It is not known how nanoparticles (NPs) navigate through the tumor microenvironment once they leave the tumor blood vessel. In this study, we used the MCL model to study the uptake and penetration dynamics of NPs. Gold nanoparticles (GNPs) were used as a model system to map the NP distribution within tissue-like structures. Our results show that NP uptake and transport are dependent on the tumor cell type. MDA-MB-231 tissue showed deeper penetration of GNPs as compared to MCF-7 one. Intracellular and extracellular distributions of NPs were mapped using CytoViva imaging. The ability of MCLs to mimic tumor tissue characteristics makes them a useful tool in assessing the efficacy of particle distribution in solid tumors.

摘要

多细胞层(MCLs)此前已被用于测定多种不同癌症药物(包括紫杉醇、阿霉素、甲氨蝶呤和5-氟尿嘧啶)在多个细胞系中的药代动力学。纳米颗粒(NPs)一旦离开肿瘤血管,如何在肿瘤微环境中穿行尚不清楚。在本研究中,我们使用MCL模型来研究NPs的摄取和渗透动力学。金纳米颗粒(GNPs)被用作模型系统来绘制NPs在类组织结构中的分布。我们的结果表明,NP的摄取和转运取决于肿瘤细胞类型。与MCF-7组织相比,MDA-MB-231组织中GNPs的渗透更深。使用CytoViva成像绘制了NPs的细胞内和细胞外分布。MCLs模拟肿瘤组织特征的能力使其成为评估实体瘤中颗粒分布效果的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba60/6223939/f5e72f839a91/40820_2014_25_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba60/6223939/e2b97cc69d68/40820_2014_25_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba60/6223939/46c90362cd7c/40820_2014_25_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba60/6223939/7f8d50ab8c89/40820_2014_25_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba60/6223939/979b2913e144/40820_2014_25_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba60/6223939/5a9677ac80db/40820_2014_25_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba60/6223939/ce643f1e7de5/40820_2014_25_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba60/6223939/db2f2e81168e/40820_2014_25_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba60/6223939/f5e72f839a91/40820_2014_25_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba60/6223939/e2b97cc69d68/40820_2014_25_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba60/6223939/46c90362cd7c/40820_2014_25_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba60/6223939/7f8d50ab8c89/40820_2014_25_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba60/6223939/979b2913e144/40820_2014_25_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba60/6223939/5a9677ac80db/40820_2014_25_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba60/6223939/ce643f1e7de5/40820_2014_25_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba60/6223939/db2f2e81168e/40820_2014_25_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba60/6223939/f5e72f839a91/40820_2014_25_Fig8_HTML.jpg

相似文献

[1]
Elucidating the Uptake and Distribution of Nanoparticles in Solid Tumors via a Multilayered Cell Culture Model.

Nanomicro Lett. 2015

[2]
Penetration of paclitaxel and 5-fluorouracil in multicellular layers of human colorectal cancer cells.

Oncol Rep. 2011-1-10

[3]
The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells.

Cancer Res. 2006-1-15

[4]
Elucidating the fate of nanoparticles among key cell components of the tumor microenvironment for promoting cancer nanotechnology.

Cancer Nanotechnol. 2020

[5]
Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer.

J Nanobiotechnology. 2016-4-22

[6]
Effect of paclitaxel priming on doxorubicin penetration in a multicellular layer model of human colorectal cancer cells.

Biochem Biophys Res Commun. 2023-3-5

[7]
The comparative effect of wrapping solid gold nanoparticles and hollow gold nanoparticles with doxorubicin-loaded thermosensitive liposomes for cancer thermo-chemotherapy.

Nanoscale. 2018-5-10

[8]
Integration of Peptides for Enhanced Uptake of PEGylayed Gold Nanoparticles.

J Nanosci Nanotechnol. 2015-3

[9]
Intracellular uptake, transport, and processing of gold nanostructures.

Mol Membr Biol. 2010-10

[10]
Tumor penetration of Sub-10 nm nanoparticles: effect of dendrimer properties on their penetration in multicellular tumor spheroids.

Nanomedicine. 2019-7-13

引用本文的文献

[1]
Low-intensity pulsed ultrasound enhances uptake of doxorubicin-loaded gold nanoparticles in cancer cells.

Ultrason Sonochem. 2025-6-3

[2]
polysaccharide-coated andrographolide nanomicelles for targeted drug delivery to enhance anti-colon cancer efficacy.

Front Immunol. 2024

[3]
Development of an ultrasound-mediated nano-sized drug-delivery system for cancer treatment: from theory to experiment.

Nanomedicine (Lond). 2024

[4]
Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives.

Bioact Mater. 2023-10-26

[5]
Three-Dimensional Spheroids for Cancer Research.

Methods Mol Biol. 2023

[6]
Aggregation-induced heterogeneities in the emission of upconverting nanoparticles at the submicron scale unfolded by hyperspectral microscopy.

Nanoscale Adv. 2019-5-21

[7]
Influencing factors and strategies of enhancing nanoparticles into tumors .

Acta Pharm Sin B. 2021-8

[8]
Modulation of gold nanoparticle mediated radiation dose enhancement through synchronization of breast tumor cell population.

Br J Radiol. 2019-8

[9]
Size-Dependent Gold Nanoparticle Interaction at Nano-Micro Interface Using Both Monolayer and Multilayer (Tissue-Like) Cell Models.

Nanomicro Lett. 2016

[10]
5-Fluorouracil Loaded Chitosan-PVA/NaMMT Nanocomposite Films for Drug Release and Antimicrobial Activity.

Nanomicro Lett. 2016

本文引用的文献

[1]
Applications of nanoparticles in nanomedicine.

J Biomed Nanotechnol. 2014-9

[2]
Gold nanoparticles in breast cancer treatment: promise and potential pitfalls.

Cancer Lett. 2014-2-17

[3]
Macromolecular therapeutics in cancer treatment: the EPR effect and beyond.

J Control Release. 2012-5-1

[4]
In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy.

Int J Nanomedicine. 2012-3-6

[5]
Nanoparticles for improved therapeutics and imaging in cancer therapy.

Recent Pat Nanotechnol. 2010-11

[6]
Gold nanoparticles as radiation sensitizers in cancer therapy.

Radiat Res. 2010-6

[7]
Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin.

J Am Chem Soc. 2010-4-7

[8]
Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery.

J Am Chem Soc. 2010-1-20

[9]
Mediating tumor targeting efficiency of nanoparticles through design.

Nano Lett. 2009-5

[10]
Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery.

ACS Nano. 2008-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索